Yongsheng Hao, Zhenzhou Li, Jingna Luo, Lingling Li, Fei Yan
{"title":"通过靶向生物合成气体囊泡评估肿瘤转移潜力的上皮间质转移的超声分子成像","authors":"Yongsheng Hao, Zhenzhou Li, Jingna Luo, Lingling Li, Fei Yan","doi":"10.1002/smll.202207940","DOIUrl":null,"url":null,"abstract":"<p>Epithelial mesenchymal transition (EMT) of tumor cells is recognized as the main driver to promote metastasis. Extensive researches suggest that gradually decreased E-cadherin (E-cad) and increased N-cadherin (N-cad) exist in the tumor cells during the EMT process. However, there still lacks suitable imaging methods to monitor the status of EMT for evaluating tumor metastatic potentials. Herein, the E-cad-targeted and N-cad-targeted gas vesicles (GVs) are developed as the acoustic probes to monitor the EMT status in tumor. The resulting probes have ≈200 nm particle size and good tumor cell targeting performance. Upon systemic administration, E-cad-GVs and N-cad-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the nontargeted GVs. The contrast imaging signals correlate well with the expression levels of E-cad and N-cad and tumor metastatic ability. This study provides a new strategy to noninvasively monitor the EMT status and help to evaluate tumor metastatic potential in vivo.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"19 21","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ultrasound Molecular Imaging of Epithelial Mesenchymal Transition for Evaluating Tumor Metastatic Potential via Targeted Biosynthetic Gas Vesicles\",\"authors\":\"Yongsheng Hao, Zhenzhou Li, Jingna Luo, Lingling Li, Fei Yan\",\"doi\":\"10.1002/smll.202207940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Epithelial mesenchymal transition (EMT) of tumor cells is recognized as the main driver to promote metastasis. Extensive researches suggest that gradually decreased E-cadherin (E-cad) and increased N-cadherin (N-cad) exist in the tumor cells during the EMT process. However, there still lacks suitable imaging methods to monitor the status of EMT for evaluating tumor metastatic potentials. Herein, the E-cad-targeted and N-cad-targeted gas vesicles (GVs) are developed as the acoustic probes to monitor the EMT status in tumor. The resulting probes have ≈200 nm particle size and good tumor cell targeting performance. Upon systemic administration, E-cad-GVs and N-cad-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the nontargeted GVs. The contrast imaging signals correlate well with the expression levels of E-cad and N-cad and tumor metastatic ability. This study provides a new strategy to noninvasively monitor the EMT status and help to evaluate tumor metastatic potential in vivo.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"19 21\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2023-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202207940\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202207940","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Ultrasound Molecular Imaging of Epithelial Mesenchymal Transition for Evaluating Tumor Metastatic Potential via Targeted Biosynthetic Gas Vesicles
Epithelial mesenchymal transition (EMT) of tumor cells is recognized as the main driver to promote metastasis. Extensive researches suggest that gradually decreased E-cadherin (E-cad) and increased N-cadherin (N-cad) exist in the tumor cells during the EMT process. However, there still lacks suitable imaging methods to monitor the status of EMT for evaluating tumor metastatic potentials. Herein, the E-cad-targeted and N-cad-targeted gas vesicles (GVs) are developed as the acoustic probes to monitor the EMT status in tumor. The resulting probes have ≈200 nm particle size and good tumor cell targeting performance. Upon systemic administration, E-cad-GVs and N-cad-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the nontargeted GVs. The contrast imaging signals correlate well with the expression levels of E-cad and N-cad and tumor metastatic ability. This study provides a new strategy to noninvasively monitor the EMT status and help to evaluate tumor metastatic potential in vivo.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.