{"title":"地球物理学的深度学习:当前和未来趋势","authors":"Siwei Yu, Jianwei Ma","doi":"10.1029/2021RG000742","DOIUrl":null,"url":null,"abstract":"<p>Recently deep learning (DL), as a new data-driven technique compared to conventional approaches, has attracted increasing attention in geophysical community, resulting in many opportunities and challenges. DL was proven to have the potential to predict complex system states accurately and relieve the “curse of dimensionality” in large temporal and spatial geophysical applications. We address the basic concepts, state-of-the-art literature, and future trends by reviewing DL approaches in various geosciences scenarios. Exploration geophysics, earthquakes, and remote sensing are the main focuses. More applications, including Earth structure, water resources, atmospheric science, and space science, are also reviewed. Additionally, the difficulties of applying DL in the geophysical community are discussed. The trends of DL in geophysics in recent years are analyzed. Several promising directions are provided for future research involving DL in geophysics, such as unsupervised learning, transfer learning, multimodal DL, federated learning, uncertainty estimation, and active learning. A coding tutorial and a summary of tips for rapidly exploring DL are presented for beginners and interested readers of geophysics.</p>","PeriodicalId":21177,"journal":{"name":"Reviews of Geophysics","volume":"59 3","pages":""},"PeriodicalIF":25.2000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000742","citationCount":"113","resultStr":"{\"title\":\"Deep Learning for Geophysics: Current and Future Trends\",\"authors\":\"Siwei Yu, Jianwei Ma\",\"doi\":\"10.1029/2021RG000742\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recently deep learning (DL), as a new data-driven technique compared to conventional approaches, has attracted increasing attention in geophysical community, resulting in many opportunities and challenges. DL was proven to have the potential to predict complex system states accurately and relieve the “curse of dimensionality” in large temporal and spatial geophysical applications. We address the basic concepts, state-of-the-art literature, and future trends by reviewing DL approaches in various geosciences scenarios. Exploration geophysics, earthquakes, and remote sensing are the main focuses. More applications, including Earth structure, water resources, atmospheric science, and space science, are also reviewed. Additionally, the difficulties of applying DL in the geophysical community are discussed. The trends of DL in geophysics in recent years are analyzed. Several promising directions are provided for future research involving DL in geophysics, such as unsupervised learning, transfer learning, multimodal DL, federated learning, uncertainty estimation, and active learning. A coding tutorial and a summary of tips for rapidly exploring DL are presented for beginners and interested readers of geophysics.</p>\",\"PeriodicalId\":21177,\"journal\":{\"name\":\"Reviews of Geophysics\",\"volume\":\"59 3\",\"pages\":\"\"},\"PeriodicalIF\":25.2000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2021RG000742\",\"citationCount\":\"113\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews of Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2021RG000742\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews of Geophysics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2021RG000742","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deep Learning for Geophysics: Current and Future Trends
Recently deep learning (DL), as a new data-driven technique compared to conventional approaches, has attracted increasing attention in geophysical community, resulting in many opportunities and challenges. DL was proven to have the potential to predict complex system states accurately and relieve the “curse of dimensionality” in large temporal and spatial geophysical applications. We address the basic concepts, state-of-the-art literature, and future trends by reviewing DL approaches in various geosciences scenarios. Exploration geophysics, earthquakes, and remote sensing are the main focuses. More applications, including Earth structure, water resources, atmospheric science, and space science, are also reviewed. Additionally, the difficulties of applying DL in the geophysical community are discussed. The trends of DL in geophysics in recent years are analyzed. Several promising directions are provided for future research involving DL in geophysics, such as unsupervised learning, transfer learning, multimodal DL, federated learning, uncertainty estimation, and active learning. A coding tutorial and a summary of tips for rapidly exploring DL are presented for beginners and interested readers of geophysics.
期刊介绍:
Geophysics Reviews (ROG) offers comprehensive overviews and syntheses of current research across various domains of the Earth and space sciences. Our goal is to present accessible and engaging reviews that cater to the diverse AGU community. While authorship is typically by invitation, we warmly encourage readers and potential authors to share their suggestions with our editors.