fe掺杂Ni3S2电极的自衍生与表面重构,实现高效稳定的整体水尿素电解

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Derun Li, Wenjing Wan, Zhaowu Wang, Hengyi Wu, Shixin Wu, Tao Jiang, Guangxu Cai, Changzhong Jiang, Feng Ren
{"title":"fe掺杂Ni3S2电极的自衍生与表面重构,实现高效稳定的整体水尿素电解","authors":"Derun Li,&nbsp;Wenjing Wan,&nbsp;Zhaowu Wang,&nbsp;Hengyi Wu,&nbsp;Shixin Wu,&nbsp;Tao Jiang,&nbsp;Guangxu Cai,&nbsp;Changzhong Jiang,&nbsp;Feng Ren","doi":"10.1002/aenm.202201913","DOIUrl":null,"url":null,"abstract":"<p>Exploring earth-abundant, highly effective, and stable electrocatalysts for overall water and urea electrolysis is urgent and essential for developing hydrogen energy technology. Herein, a simple self-derivation method is used to fabricate a Fe-doped Ni<sub>3</sub>S<sub>2</sub> electrode. The electrode exhibits an impressive trifunctional catalyst, with low overpotentials of 290, 198, and 254 mV at 100 mA cm<sup>−2</sup> for the oxygen evolution reaction (OER), urea oxidation reaction (UOR), and hydrogen evolution reaction (HER). The durability is higher than 3500 h (146 days) at 100 mA cm<sup>−2</sup> for the OER without obvious change. In situ Raman spectra reveal the incorporation of Fe inhibited S dissolution and facilitates the catalyst reconstruction. The density functional theory calculations indicate that the doping of Fe optimizes the adsorption of the rate-determining step and the d-band center is closer to the Fermi level, which accelerates the OER process. The two-electrode electrolyzer needs the cell voltages of only 1.76 and 1.57 V to achieve a current density of 100 mA cm<sup>−2</sup> and remarkable durability for more than 500 h at 100 and 500 mA cm<sup>−2</sup> for overall water and urea splitting. This work holds great promise for industrial water and urea splitting applications.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"12 39","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2022-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Self-Derivation and Surface Reconstruction of Fe-Doped Ni3S2 Electrode Realizing High-Efficient and Stable Overall Water and Urea Electrolysis\",\"authors\":\"Derun Li,&nbsp;Wenjing Wan,&nbsp;Zhaowu Wang,&nbsp;Hengyi Wu,&nbsp;Shixin Wu,&nbsp;Tao Jiang,&nbsp;Guangxu Cai,&nbsp;Changzhong Jiang,&nbsp;Feng Ren\",\"doi\":\"10.1002/aenm.202201913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exploring earth-abundant, highly effective, and stable electrocatalysts for overall water and urea electrolysis is urgent and essential for developing hydrogen energy technology. Herein, a simple self-derivation method is used to fabricate a Fe-doped Ni<sub>3</sub>S<sub>2</sub> electrode. The electrode exhibits an impressive trifunctional catalyst, with low overpotentials of 290, 198, and 254 mV at 100 mA cm<sup>−2</sup> for the oxygen evolution reaction (OER), urea oxidation reaction (UOR), and hydrogen evolution reaction (HER). The durability is higher than 3500 h (146 days) at 100 mA cm<sup>−2</sup> for the OER without obvious change. In situ Raman spectra reveal the incorporation of Fe inhibited S dissolution and facilitates the catalyst reconstruction. The density functional theory calculations indicate that the doping of Fe optimizes the adsorption of the rate-determining step and the d-band center is closer to the Fermi level, which accelerates the OER process. The two-electrode electrolyzer needs the cell voltages of only 1.76 and 1.57 V to achieve a current density of 100 mA cm<sup>−2</sup> and remarkable durability for more than 500 h at 100 and 500 mA cm<sup>−2</sup> for overall water and urea splitting. This work holds great promise for industrial water and urea splitting applications.</p>\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":\"12 39\",\"pages\":\"\"},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2022-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201913\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202201913","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 55

摘要

探索地球资源丰富、高效稳定的水、尿素整体电解电催化剂是发展氢能技术的迫切需要。本文采用一种简单的自推导方法制备了掺铁Ni3S2电极。该电极表现出令人印象深刻的三功能催化剂,在100 mA cm−2下,析氧反应(OER)、尿素氧化反应(UOR)和析氢反应(HER)的过电位分别为290、198和254 mV。在100 mA cm−2条件下,OER的耐久度可达3500 h(146天)以上,且无明显变化。原位拉曼光谱显示,Fe的加入抑制了S的溶解,促进了催化剂的重构。密度泛函理论计算表明,Fe的掺杂优化了速率决定步骤的吸附,d带中心更接近费米能级,加速了OER过程。双电极电解槽只需要1.76和1.57 V的电池电压就可以实现100 mA cm - 2的电流密度,并且在100和500 mA cm - 2下可以持续超过500小时,从而实现水和尿素的整体分解。这项工作在工业用水和尿素裂解方面具有很大的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-Derivation and Surface Reconstruction of Fe-Doped Ni3S2 Electrode Realizing High-Efficient and Stable Overall Water and Urea Electrolysis

Self-Derivation and Surface Reconstruction of Fe-Doped Ni3S2 Electrode Realizing High-Efficient and Stable Overall Water and Urea Electrolysis

Exploring earth-abundant, highly effective, and stable electrocatalysts for overall water and urea electrolysis is urgent and essential for developing hydrogen energy technology. Herein, a simple self-derivation method is used to fabricate a Fe-doped Ni3S2 electrode. The electrode exhibits an impressive trifunctional catalyst, with low overpotentials of 290, 198, and 254 mV at 100 mA cm−2 for the oxygen evolution reaction (OER), urea oxidation reaction (UOR), and hydrogen evolution reaction (HER). The durability is higher than 3500 h (146 days) at 100 mA cm−2 for the OER without obvious change. In situ Raman spectra reveal the incorporation of Fe inhibited S dissolution and facilitates the catalyst reconstruction. The density functional theory calculations indicate that the doping of Fe optimizes the adsorption of the rate-determining step and the d-band center is closer to the Fermi level, which accelerates the OER process. The two-electrode electrolyzer needs the cell voltages of only 1.76 and 1.57 V to achieve a current density of 100 mA cm−2 and remarkable durability for more than 500 h at 100 and 500 mA cm−2 for overall water and urea splitting. This work holds great promise for industrial water and urea splitting applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信