用于电池级高能量密度全固态电池的超薄高离子导电性硫化膜两亲粘合剂

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Daxian Cao, Qiang Li, Xiao Sun, Ying Wang, Xianhui Zhao, Ercan Cakmak, Wentao Liang, Alexander Anderson, Soydan Ozcan, Hongli Zhu
{"title":"用于电池级高能量密度全固态电池的超薄高离子导电性硫化膜两亲粘合剂","authors":"Daxian Cao,&nbsp;Qiang Li,&nbsp;Xiao Sun,&nbsp;Ying Wang,&nbsp;Xianhui Zhao,&nbsp;Ercan Cakmak,&nbsp;Wentao Liang,&nbsp;Alexander Anderson,&nbsp;Soydan Ozcan,&nbsp;Hongli Zhu","doi":"10.1002/adma.202105505","DOIUrl":null,"url":null,"abstract":"<p>Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (&lt;25 mS), which limit the cell-level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li<sub>6</sub>PS<sub>5</sub>Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm<sup>−2</sup> and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg<sup>−1</sup> and 675 Wh L<sup>−1</sup>, individually.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"33 52","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries\",\"authors\":\"Daxian Cao,&nbsp;Qiang Li,&nbsp;Xiao Sun,&nbsp;Ying Wang,&nbsp;Xianhui Zhao,&nbsp;Ercan Cakmak,&nbsp;Wentao Liang,&nbsp;Alexander Anderson,&nbsp;Soydan Ozcan,&nbsp;Hongli Zhu\",\"doi\":\"10.1002/adma.202105505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (&lt;25 mS), which limit the cell-level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li<sub>6</sub>PS<sub>5</sub>Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm<sup>−2</sup> and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg<sup>−1</sup> and 675 Wh L<sup>−1</sup>, individually.</p>\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"33 52\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adma.202105505\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202105505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 40

摘要

目前用于全固态锂电池(aslb)的硫化物固态电解质(SE)膜厚度高(0.5-1.0 mm),离子电导低(25 mS),这限制了电池级能量和功率密度。基于乙基纤维素独特的两亲分子结构、优越的热稳定性和优异的结合能力,本研究制备了一种厚度为47µm的超薄独立SE膜。以乙基纤维素为有效的分散剂和粘合剂,Li6PS5Cl在甲苯中分散均匀,具有优异的成膜性。此外,还实现了4.32 Ω cm−2的超低面电阻和291 mS的显著离子电导(比最先进的硫化SE膜高一个数量级)。与该SE膜组装的aslb分别提供175 Wh kg - 1和675 Wh L - 1的细胞级高重量和体积能量密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amphipathic Binder Integrating Ultrathin and Highly Ion-Conductive Sulfide Membrane for Cell-Level High-Energy-Density All-Solid-State Batteries

Current sulfide solid-state electrolyte (SE) membranes utilized in all-solid-state lithium batteries (ASLBs) have a high thickness (0.5–1.0 mm) and low ion conductance (<25 mS), which limit the cell-level energy and power densities. Based on ethyl cellulose's unique amphipathic molecular structure, superior thermal stability, and excellent binding capability, this work fabricates a freestanding SE membrane with an ultralow thickness of 47 µm. With ethyl cellulose as an effective disperser and a binder, the Li6PS5Cl is uniformly dispersed in toluene and possesses superior film formability. In addition, an ultralow areal resistance of 4.32 Ω cm−2 and a remarkable ion conductance of 291 mS (one order higher than the state-of-the-art sulfide SE membrane) are achieved. The ASLBs assembled with this SE membrane deliver cell-level high gravimetric and volumetric energy densities of 175 Wh kg−1 and 675 Wh L−1, individually.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信