基于集成Kaiman滤波的遥感与作物模型同化LAI估算

LI Rui , LI Cun-jun , DONG Ying-ying , LIU Feng , WANG Ji-hua , YANG Xiao-dong , PAN Yu-chun
{"title":"基于集成Kaiman滤波的遥感与作物模型同化LAI估算","authors":"LI Rui ,&nbsp;LI Cun-jun ,&nbsp;DONG Ying-ying ,&nbsp;LIU Feng ,&nbsp;WANG Ji-hua ,&nbsp;YANG Xiao-dong ,&nbsp;PAN Yu-chun","doi":"10.1016/S1671-2927(11)60156-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><p>Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kaiman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the <em>R<sup>2</sup></em> reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production.</p></div>","PeriodicalId":7475,"journal":{"name":"Agricultural Sciences in China","volume":"10 10","pages":"Pages 1595-1602"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1671-2927(11)60156-9","citationCount":"34","resultStr":"{\"title\":\"Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kaiman Filter\",\"authors\":\"LI Rui ,&nbsp;LI Cun-jun ,&nbsp;DONG Ying-ying ,&nbsp;LIU Feng ,&nbsp;WANG Ji-hua ,&nbsp;YANG Xiao-dong ,&nbsp;PAN Yu-chun\",\"doi\":\"10.1016/S1671-2927(11)60156-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><p>Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kaiman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the <em>R<sup>2</sup></em> reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production.</p></div>\",\"PeriodicalId\":7475,\"journal\":{\"name\":\"Agricultural Sciences in China\",\"volume\":\"10 10\",\"pages\":\"Pages 1595-1602\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1671-2927(11)60156-9\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural Sciences in China\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1671292711601569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Sciences in China","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1671292711601569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

摘要农业遥感研究中的数据同化对于与遥感观测和模式模拟相结合进行参数估计具有重要意义。本研究不仅结合作物生长模型(CERES-Wheat)与遥感数据设计并实现了集成开曼滤波(Ensemble Kaiman Filtering, EnKF)同化,还利用遥感数据对冬小麦关键参数(LAI)进行了优化更新。结果表明,同化LAI与观测值基本一致,R2为0.8315。因此,同化遥感和作物模型可以为农业生产提供参考数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assimilation of Remote Sensing and Crop Model for LAI Estimation Based on Ensemble Kaiman Filter

Abstract

Data assimilation in agricultural remote sensing research is of great significance to integrate with remote sensing observations and model simulations for parameters estimation. The present investigation not only designed and realized the Ensemble Kaiman Filtering algorithm (EnKF) assimilation by combing the crop growth model (CERES-Wheat) with remote sensing data, but also optimized and updated the key parameters (LAI) of winter wheat by using remote sensing data. Results showed that the assimilation LAI and the observation ones agreed with each other, and the R2 reached 0.8315. So assimilation remote sensing and crop model could provide reference data for the agricultural production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agricultural Sciences in China
Agricultural Sciences in China AGRICULTURE, MULTIDISCIPLINARY-
自引率
0.00%
发文量
0
审稿时长
3.2 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信