硫模板法制备Co3O4/MXene三维多孔泡沫,增强Li/ k离子存储

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xiaqing Chang, Qizhen Zhu, Qian Zhao, Peng Zhang, Ning Sun, Razium A. Soomro, Xiaoxue Wang and Bin Xu*, 
{"title":"硫模板法制备Co3O4/MXene三维多孔泡沫,增强Li/ k离子存储","authors":"Xiaqing Chang,&nbsp;Qizhen Zhu,&nbsp;Qian Zhao,&nbsp;Peng Zhang,&nbsp;Ning Sun,&nbsp;Razium A. Soomro,&nbsp;Xiaoxue Wang and Bin Xu*,&nbsp;","doi":"10.1021/acsami.2c19681","DOIUrl":null,"url":null,"abstract":"<p >Co<sub>3</sub>O<sub>4</sub> is a potential high-capacity anode material for lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), but the poor electrical conductivity and large volume fluctuations during long-term cycling severely limit its cycle durability and rate capabilities, especially for PIBs with large K-ion size. Here, we propose a sulfur template route to fabricate an integral 3D porous Co<sub>3</sub>O<sub>4</sub>/MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) foam using simple vacuum co-filtrating an aqueous dispersion of Co<sub>3</sub>O<sub>4</sub>, S and MXene followed by calcining to remove the S template. The 3D porous structure can easily accommodate the large volume changes of Co<sub>3</sub>O<sub>4</sub> while maintains electrode structural integrity, allowing to realize outstanding long-term cycle stability when tested as anodes for both LIBs (620.4 mA h g<sup>–1</sup> after 1000 cycles at 1 A g<sup>–1</sup>) and PIBs (134.1 mA h g<sup>–1</sup> after 1000 cycles at 0.5 A g<sup>–1</sup>). The high metallic conductivity of the 3D porous MXene network further facilitates the electron/ion transmission, resulting in an improved rate capability of 390 mA h g<sup>–1</sup> at 13 A g<sup>–1</sup> for LIBs and 125.3 mA h g<sup>–1</sup> at 1 A g<sup>–1</sup> for PIBs. The robust performance of the 3D porous Co<sub>3</sub>O<sub>4</sub>/MXene foam reflects its perspective as a high-performance anode material for both LIBs and PIBs.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"15 6","pages":"7999–8009"},"PeriodicalIF":8.2000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"3D Porous Co3O4/MXene Foam Fabricated via a Sulfur Template Strategy for Enhanced Li/K-Ion Storage\",\"authors\":\"Xiaqing Chang,&nbsp;Qizhen Zhu,&nbsp;Qian Zhao,&nbsp;Peng Zhang,&nbsp;Ning Sun,&nbsp;Razium A. Soomro,&nbsp;Xiaoxue Wang and Bin Xu*,&nbsp;\",\"doi\":\"10.1021/acsami.2c19681\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Co<sub>3</sub>O<sub>4</sub> is a potential high-capacity anode material for lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), but the poor electrical conductivity and large volume fluctuations during long-term cycling severely limit its cycle durability and rate capabilities, especially for PIBs with large K-ion size. Here, we propose a sulfur template route to fabricate an integral 3D porous Co<sub>3</sub>O<sub>4</sub>/MXene (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) foam using simple vacuum co-filtrating an aqueous dispersion of Co<sub>3</sub>O<sub>4</sub>, S and MXene followed by calcining to remove the S template. The 3D porous structure can easily accommodate the large volume changes of Co<sub>3</sub>O<sub>4</sub> while maintains electrode structural integrity, allowing to realize outstanding long-term cycle stability when tested as anodes for both LIBs (620.4 mA h g<sup>–1</sup> after 1000 cycles at 1 A g<sup>–1</sup>) and PIBs (134.1 mA h g<sup>–1</sup> after 1000 cycles at 0.5 A g<sup>–1</sup>). The high metallic conductivity of the 3D porous MXene network further facilitates the electron/ion transmission, resulting in an improved rate capability of 390 mA h g<sup>–1</sup> at 13 A g<sup>–1</sup> for LIBs and 125.3 mA h g<sup>–1</sup> at 1 A g<sup>–1</sup> for PIBs. The robust performance of the 3D porous Co<sub>3</sub>O<sub>4</sub>/MXene foam reflects its perspective as a high-performance anode material for both LIBs and PIBs.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"15 6\",\"pages\":\"7999–8009\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsami.2c19681\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsami.2c19681","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

Co3O4是锂离子电池(LIBs)和钾离子电池(PIBs)潜在的高容量负极材料,但其导电性差和长期循环时体积波动大严重限制了其循环耐久性和倍率能力,特别是对于具有大k离子尺寸的PIBs。在这里,我们提出了一种硫模板方法,通过简单的真空共过滤Co3O4, S和MXene的水分散体,然后煅烧去除S模板来制备完整的3D多孔Co3O4/MXene (Ti3C2Tx)泡沫。3D多孔结构可以很容易地适应Co3O4的大体积变化,同时保持电极结构的完整性,在作为LIBs(在1 A g-1下1000次循环后620.4 mA h g-1)和PIBs(在0.5 A g-1下1000次循环后134.1 mA h g-1)的阳极进行测试时,可以实现出色的长期循环稳定性。3D多孔MXene网络的高金属导电性进一步促进了电子/离子的传输,从而提高了LIBs在13 A g-1时的390 mA h - 1速率和PIBs在1 A g-1时的125.3 mA h - 1速率。3D多孔Co3O4/MXene泡沫材料的强大性能反映了其作为lib和pib高性能阳极材料的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

3D Porous Co3O4/MXene Foam Fabricated via a Sulfur Template Strategy for Enhanced Li/K-Ion Storage

3D Porous Co3O4/MXene Foam Fabricated via a Sulfur Template Strategy for Enhanced Li/K-Ion Storage

Co3O4 is a potential high-capacity anode material for lithium-ion batteries (LIBs) and potassium-ion batteries (PIBs), but the poor electrical conductivity and large volume fluctuations during long-term cycling severely limit its cycle durability and rate capabilities, especially for PIBs with large K-ion size. Here, we propose a sulfur template route to fabricate an integral 3D porous Co3O4/MXene (Ti3C2Tx) foam using simple vacuum co-filtrating an aqueous dispersion of Co3O4, S and MXene followed by calcining to remove the S template. The 3D porous structure can easily accommodate the large volume changes of Co3O4 while maintains electrode structural integrity, allowing to realize outstanding long-term cycle stability when tested as anodes for both LIBs (620.4 mA h g–1 after 1000 cycles at 1 A g–1) and PIBs (134.1 mA h g–1 after 1000 cycles at 0.5 A g–1). The high metallic conductivity of the 3D porous MXene network further facilitates the electron/ion transmission, resulting in an improved rate capability of 390 mA h g–1 at 13 A g–1 for LIBs and 125.3 mA h g–1 at 1 A g–1 for PIBs. The robust performance of the 3D porous Co3O4/MXene foam reflects its perspective as a high-performance anode material for both LIBs and PIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信