扭曲SU(2)量子群的表示和一些q-超几何正交多项式

T.H. Koornwinder
{"title":"扭曲SU(2)量子群的表示和一些q-超几何正交多项式","authors":"T.H. Koornwinder","doi":"10.1016/S1385-7258(89)80020-4","DOIUrl":null,"url":null,"abstract":"<div><p>The matrix elements of the irreducible unitary representations of the twisted <em>SU</em>(2) quantum group are computed explicitly. It is shown that they can be identified with two different classes of <em>p</em>-hypergeometric orthogonal polynomials: with the little <em>q</em>-Jacobi polynomials and with certain <em>q</em>-analogues of Krawtchouk polynomials. The orthogonality relations for these polynomials correspond to Schur type orthogonality relations in the first case and to the unitarity conditions for the representations in the second case. The paper also contains a new proof of Woronowicz' classification of the unitary irreducible representations of this quantum group. It avoids infinitesimal methods. Symmetries of the matrix elements of the irreducible unitary representations are proved without using the explicit expressions.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"92 1","pages":"Pages 97-117"},"PeriodicalIF":0.0000,"publicationDate":"1989-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80020-4","citationCount":"109","resultStr":"{\"title\":\"Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials\",\"authors\":\"T.H. Koornwinder\",\"doi\":\"10.1016/S1385-7258(89)80020-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The matrix elements of the irreducible unitary representations of the twisted <em>SU</em>(2) quantum group are computed explicitly. It is shown that they can be identified with two different classes of <em>p</em>-hypergeometric orthogonal polynomials: with the little <em>q</em>-Jacobi polynomials and with certain <em>q</em>-analogues of Krawtchouk polynomials. The orthogonality relations for these polynomials correspond to Schur type orthogonality relations in the first case and to the unitarity conditions for the representations in the second case. The paper also contains a new proof of Woronowicz' classification of the unitary irreducible representations of this quantum group. It avoids infinitesimal methods. Symmetries of the matrix elements of the irreducible unitary representations are proved without using the explicit expressions.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"92 1\",\"pages\":\"Pages 97-117\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(89)80020-4\",\"citationCount\":\"109\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725889800204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725889800204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 109

摘要

明确地计算了扭曲SU(2)量子群的不可约酉表示的矩阵元素。证明了它们可以用两类不同的p-超几何正交多项式来识别:小q-Jacobi多项式和某些q-类似的Krawtchouk多项式。这些多项式的正交关系对应于第一种情况下的舒尔型正交关系和第二种情况下表示的统一条件。本文还对该量子群的幺正不可约表示的Woronowicz分类给出了新的证明。它避免了无穷小的方法。在不使用显式表达式的情况下,证明了不可约酉表示的矩阵元素的对称性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representations of the twisted SU(2) quantum group and some q-hypergeometric orthogonal polynomials

The matrix elements of the irreducible unitary representations of the twisted SU(2) quantum group are computed explicitly. It is shown that they can be identified with two different classes of p-hypergeometric orthogonal polynomials: with the little q-Jacobi polynomials and with certain q-analogues of Krawtchouk polynomials. The orthogonality relations for these polynomials correspond to Schur type orthogonality relations in the first case and to the unitarity conditions for the representations in the second case. The paper also contains a new proof of Woronowicz' classification of the unitary irreducible representations of this quantum group. It avoids infinitesimal methods. Symmetries of the matrix elements of the irreducible unitary representations are proved without using the explicit expressions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信