Timothy B. Higgins, Aneesh C. Subramanian, Andre Graubner, Lukas Kapp-Schwoerer, Peter A. G. Watson, Sarah Sparrow, Karthik Kashinath, Sol Kim, Luca Delle Monache, Will Chapman
{"title":"利用深度学习分析高分辨率大型气候数据集中的大气河流","authors":"Timothy B. Higgins, Aneesh C. Subramanian, Andre Graubner, Lukas Kapp-Schwoerer, Peter A. G. Watson, Sarah Sparrow, Karthik Kashinath, Sol Kim, Luca Delle Monache, Will Chapman","doi":"10.1029/2022MS003495","DOIUrl":null,"url":null,"abstract":"<p>There is currently large uncertainty over the impacts of climate change on precipitation trends over the US west coast. Atmospheric rivers (ARs) are a significant source of US west coast precipitation and trends in ARs can provide insight into future precipitation trends. There are already a variety of different methods used to identify ARs, but many are used in contexts that are often difficult to apply to large climate datasets due to their computational cost and requirement of integrated vapor transport as an input variable, which can be expensive to compute in climate models at high temporal frequencies. Using deep learning (DL) to track ARs is a unique approach that can alleviate some of the computational challenges that exist in more traditional methods. However, some questions still remain regarding its flexibility and robustness. This research investigates the consistency of a DL methodology of tracking ARs with more established algorithms to demonstrate its high-level performance for future studies.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"15 4","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003495","citationCount":"0","resultStr":"{\"title\":\"Using Deep Learning for an Analysis of Atmospheric Rivers in a High-Resolution Large Ensemble Climate Data Set\",\"authors\":\"Timothy B. Higgins, Aneesh C. Subramanian, Andre Graubner, Lukas Kapp-Schwoerer, Peter A. G. Watson, Sarah Sparrow, Karthik Kashinath, Sol Kim, Luca Delle Monache, Will Chapman\",\"doi\":\"10.1029/2022MS003495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is currently large uncertainty over the impacts of climate change on precipitation trends over the US west coast. Atmospheric rivers (ARs) are a significant source of US west coast precipitation and trends in ARs can provide insight into future precipitation trends. There are already a variety of different methods used to identify ARs, but many are used in contexts that are often difficult to apply to large climate datasets due to their computational cost and requirement of integrated vapor transport as an input variable, which can be expensive to compute in climate models at high temporal frequencies. Using deep learning (DL) to track ARs is a unique approach that can alleviate some of the computational challenges that exist in more traditional methods. However, some questions still remain regarding its flexibility and robustness. This research investigates the consistency of a DL methodology of tracking ARs with more established algorithms to demonstrate its high-level performance for future studies.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"15 4\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2022MS003495\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003495\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2022MS003495","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Using Deep Learning for an Analysis of Atmospheric Rivers in a High-Resolution Large Ensemble Climate Data Set
There is currently large uncertainty over the impacts of climate change on precipitation trends over the US west coast. Atmospheric rivers (ARs) are a significant source of US west coast precipitation and trends in ARs can provide insight into future precipitation trends. There are already a variety of different methods used to identify ARs, but many are used in contexts that are often difficult to apply to large climate datasets due to their computational cost and requirement of integrated vapor transport as an input variable, which can be expensive to compute in climate models at high temporal frequencies. Using deep learning (DL) to track ARs is a unique approach that can alleviate some of the computational challenges that exist in more traditional methods. However, some questions still remain regarding its flexibility and robustness. This research investigates the consistency of a DL methodology of tracking ARs with more established algorithms to demonstrate its high-level performance for future studies.
期刊介绍:
The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community.
Open access. Articles are available free of charge for everyone with Internet access to view and download.
Formal peer review.
Supplemental material, such as code samples, images, and visualizations, is published at no additional charge.
No additional charge for color figures.
Modest page charges to cover production costs.
Articles published in high-quality full text PDF, HTML, and XML.
Internal and external reference linking, DOI registration, and forward linking via CrossRef.