随机动力系统的公制压力:一个局部观点

IF 1.4 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
M. Rahimi, A. Ghodrati
{"title":"随机动力系统的公制压力:一个局部观点","authors":"M. Rahimi,&nbsp;A. Ghodrati","doi":"10.1007/s40995-023-01500-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a local approach to the metric pressure of random dynamical systems. We define a non-negative measurable map with the property that, its integral with respect to a measure, called the diagonal measure, results in the metric pressure of a random dynamical system. In particular, it results in a local entropy map for random dynamical systems.</p></div>","PeriodicalId":600,"journal":{"name":"Iranian Journal of Science and Technology, Transactions A: Science","volume":"47 4","pages":"1343 - 1350"},"PeriodicalIF":1.4000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Metric Pressure of Random Dynamical Systems: A Local Viewpoint\",\"authors\":\"M. Rahimi,&nbsp;A. Ghodrati\",\"doi\":\"10.1007/s40995-023-01500-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we present a local approach to the metric pressure of random dynamical systems. We define a non-negative measurable map with the property that, its integral with respect to a measure, called the diagonal measure, results in the metric pressure of a random dynamical system. In particular, it results in a local entropy map for random dynamical systems.</p></div>\",\"PeriodicalId\":600,\"journal\":{\"name\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"volume\":\"47 4\",\"pages\":\"1343 - 1350\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Science and Technology, Transactions A: Science\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40995-023-01500-z\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions A: Science","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s40995-023-01500-z","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解随机动力系统度量压力的一种局部方法。我们定义了一个非负可测映射,它对一个测度(称为对角线测度)的积分得到一个随机动力系统的度量压力。特别地,它得到了随机动力系统的局部熵映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On Metric Pressure of Random Dynamical Systems: A Local Viewpoint

On Metric Pressure of Random Dynamical Systems: A Local Viewpoint

In this paper, we present a local approach to the metric pressure of random dynamical systems. We define a non-negative measurable map with the property that, its integral with respect to a measure, called the diagonal measure, results in the metric pressure of a random dynamical system. In particular, it results in a local entropy map for random dynamical systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
5.90%
发文量
122
审稿时长
>12 weeks
期刊介绍: The aim of this journal is to foster the growth of scientific research among Iranian scientists and to provide a medium which brings the fruits of their research to the attention of the world’s scientific community. The journal publishes original research findings – which may be theoretical, experimental or both - reviews, techniques, and comments spanning all subjects in the field of basic sciences, including Physics, Chemistry, Mathematics, Statistics, Biology and Earth Sciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信