A. P. Lingaswamy, T. Nishanth, T. V. Lakshimi Kumar, M. K. Satheesh Kumar
{"title":"背景区有机气溶胶成分混合状态的变化及二次有机气溶胶的形成","authors":"A. P. Lingaswamy, T. Nishanth, T. V. Lakshimi Kumar, M. K. Satheesh Kumar","doi":"10.1007/s10874-022-09445-0","DOIUrl":null,"url":null,"abstract":"<div><p>Investigation on organic particles was limited in the background regions of Yangtze River Delta (YRD) and little information has been obtained on organic particles of Lin’an (LA). In the present study, the morphology, composition, mixing state, and size of organic aerosols with diameter less than 1 µm were characterized at Lin’an from 20 March 2019 to 20 April 2019. In all samples, irregular types of organic matter (OM) particles were high fraction during morning (72.4%), afternoon (59.1%), and evening (52%), and most of them were internally mixed. In our study, we identified a higher fraction of internally mixed particles in evenings (85%), followed by afternoon (81%), and fewer mixed particles in mornings (68%), indicating particle growth during afternoon and evening. Further, the results show that fraction of organic coating particles was higher in evening (27.4%) and afternoon (12%) indicates strong photochemical processes and formation of secondary organic aerosol on the inorganic particles and new particles formation. Our study reveals that biomass burning in the morning and coal burning from heavy industries, power plants, and vehicles in surrounding urban regions in the afternoon and evenings significantly affected background air quality.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"80 3","pages":"157 - 172"},"PeriodicalIF":3.0000,"publicationDate":"2022-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variations in mixing states of organic aerosol composition and formation of secondary organic aerosol at background region\",\"authors\":\"A. P. Lingaswamy, T. Nishanth, T. V. Lakshimi Kumar, M. K. Satheesh Kumar\",\"doi\":\"10.1007/s10874-022-09445-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Investigation on organic particles was limited in the background regions of Yangtze River Delta (YRD) and little information has been obtained on organic particles of Lin’an (LA). In the present study, the morphology, composition, mixing state, and size of organic aerosols with diameter less than 1 µm were characterized at Lin’an from 20 March 2019 to 20 April 2019. In all samples, irregular types of organic matter (OM) particles were high fraction during morning (72.4%), afternoon (59.1%), and evening (52%), and most of them were internally mixed. In our study, we identified a higher fraction of internally mixed particles in evenings (85%), followed by afternoon (81%), and fewer mixed particles in mornings (68%), indicating particle growth during afternoon and evening. Further, the results show that fraction of organic coating particles was higher in evening (27.4%) and afternoon (12%) indicates strong photochemical processes and formation of secondary organic aerosol on the inorganic particles and new particles formation. Our study reveals that biomass burning in the morning and coal burning from heavy industries, power plants, and vehicles in surrounding urban regions in the afternoon and evenings significantly affected background air quality.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"80 3\",\"pages\":\"157 - 172\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-022-09445-0\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09445-0","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Variations in mixing states of organic aerosol composition and formation of secondary organic aerosol at background region
Investigation on organic particles was limited in the background regions of Yangtze River Delta (YRD) and little information has been obtained on organic particles of Lin’an (LA). In the present study, the morphology, composition, mixing state, and size of organic aerosols with diameter less than 1 µm were characterized at Lin’an from 20 March 2019 to 20 April 2019. In all samples, irregular types of organic matter (OM) particles were high fraction during morning (72.4%), afternoon (59.1%), and evening (52%), and most of them were internally mixed. In our study, we identified a higher fraction of internally mixed particles in evenings (85%), followed by afternoon (81%), and fewer mixed particles in mornings (68%), indicating particle growth during afternoon and evening. Further, the results show that fraction of organic coating particles was higher in evening (27.4%) and afternoon (12%) indicates strong photochemical processes and formation of secondary organic aerosol on the inorganic particles and new particles formation. Our study reveals that biomass burning in the morning and coal burning from heavy industries, power plants, and vehicles in surrounding urban regions in the afternoon and evenings significantly affected background air quality.
期刊介绍:
The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics:
Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only.
The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere.
Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere.
Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.