{"title":"自伴随算子族生成流形的局部研究","authors":"Yakov Dymarskii , Olga Ivanova , Eugenia Masyuta","doi":"10.1016/j.top.2009.11.021","DOIUrl":null,"url":null,"abstract":"<div><p>We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 213-223"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.021","citationCount":"5","resultStr":"{\"title\":\"Local research of manifolds generated by families of self-adjoint operators\",\"authors\":\"Yakov Dymarskii , Olga Ivanova , Eugenia Masyuta\",\"doi\":\"10.1016/j.top.2009.11.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 213-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.021\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
我们考虑了特征值具有固定多重的自伴随算子的V.I. Arnold流形和特征向量的K. Uhlenbeck流形。我们的目的是考虑局部分析和这些流形之间的联系。给出了谱摄动问题的拓扑描述,特别是有限多重特征值分裂问题。对于流形的研究,我们使用了D. Fujiwara, M. Tanikawa和Sh. Yukita引入的局部微分同态。
Local research of manifolds generated by families of self-adjoint operators
We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.