自伴随算子族生成流形的局部研究

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.021
Yakov Dymarskii , Olga Ivanova , Eugenia Masyuta
{"title":"自伴随算子族生成流形的局部研究","authors":"Yakov Dymarskii ,&nbsp;Olga Ivanova ,&nbsp;Eugenia Masyuta","doi":"10.1016/j.top.2009.11.021","DOIUrl":null,"url":null,"abstract":"<div><p>We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 213-223"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.021","citationCount":"5","resultStr":"{\"title\":\"Local research of manifolds generated by families of self-adjoint operators\",\"authors\":\"Yakov Dymarskii ,&nbsp;Olga Ivanova ,&nbsp;Eugenia Masyuta\",\"doi\":\"10.1016/j.top.2009.11.021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 213-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.021\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们考虑了特征值具有固定多重的自伴随算子的V.I. Arnold流形和特征向量的K. Uhlenbeck流形。我们的目的是考虑局部分析和这些流形之间的联系。给出了谱摄动问题的拓扑描述,特别是有限多重特征值分裂问题。对于流形的研究,我们使用了D. Fujiwara, M. Tanikawa和Sh. Yukita引入的局部微分同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local research of manifolds generated by families of self-adjoint operators

We consider V.I. Arnold’s manifold of self-adjoint operators with fixed multiplicity of eigenvalues and K. Uhlenbeck’s manifold of eigenvectors. Our aim is to consider the local analysis and the connection between these manifolds. We present the topological description of the spectrum perturbation problem, specifically the finite-multiple eigenvalue splitting problem. For investigation of manifolds, we use the local diffeomorphism introduced by D. Fujiwara, M. Tanikawa, and Sh. Yukita.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信