{"title":"无限维空间的通用模型","authors":"T. Banakh , O. Shabat , M. Zarichnyi","doi":"10.1016/j.top.2009.11.018","DOIUrl":null,"url":null,"abstract":"<div><p>Given an ordinal <span><math><mi>α</mi></math></span> and a pointed topological space <span><math><mi>X</mi></math></span>, we endow <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup><mo>=</mo><mo>∪</mo><mrow><mo>{</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>β</mi><mo><</mo><mi>α</mi><mo>}</mo></mrow></math></span> with the strongest topology that coincides with the product topology on every subset <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span>, <span><math><mi>β</mi><mo><</mo><mi>α</mi></math></span>. It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mi>X</mi><mo>=</mo><mi>I</mi><mo>,</mo><mi>R</mi></math></span>. This paper deals with some topological properties of spaces <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span>. Some new classification and characterization theorems are proved for these spaces.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 186-196"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.018","citationCount":"0","resultStr":"{\"title\":\"A universal model infinite-dimensional space\",\"authors\":\"T. Banakh , O. Shabat , M. Zarichnyi\",\"doi\":\"10.1016/j.top.2009.11.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given an ordinal <span><math><mi>α</mi></math></span> and a pointed topological space <span><math><mi>X</mi></math></span>, we endow <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup><mo>=</mo><mo>∪</mo><mrow><mo>{</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>β</mi><mo><</mo><mi>α</mi><mo>}</mo></mrow></math></span> with the strongest topology that coincides with the product topology on every subset <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span>, <span><math><mi>β</mi><mo><</mo><mi>α</mi></math></span>. It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mi>X</mi><mo>=</mo><mi>I</mi><mo>,</mo><mi>R</mi></math></span>. This paper deals with some topological properties of spaces <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo><</mo><mi>α</mi></mrow></msup></math></span>. Some new classification and characterization theorems are proved for these spaces.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 186-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given an ordinal and a pointed topological space , we endow with the strongest topology that coincides with the product topology on every subset of , . It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form for . This paper deals with some topological properties of spaces . Some new classification and characterization theorems are proved for these spaces.