无限维空间的通用模型

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.018
T. Banakh , O. Shabat , M. Zarichnyi
{"title":"无限维空间的通用模型","authors":"T. Banakh ,&nbsp;O. Shabat ,&nbsp;M. Zarichnyi","doi":"10.1016/j.top.2009.11.018","DOIUrl":null,"url":null,"abstract":"<div><p>Given an ordinal <span><math><mi>α</mi></math></span> and a pointed topological space <span><math><mi>X</mi></math></span>, we endow <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup><mo>=</mo><mo>∪</mo><mrow><mo>{</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>β</mi><mo>&lt;</mo><mi>α</mi><mo>}</mo></mrow></math></span> with the strongest topology that coincides with the product topology on every subset <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span>, <span><math><mi>β</mi><mo>&lt;</mo><mi>α</mi></math></span>. It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mi>X</mi><mo>=</mo><mi>I</mi><mo>,</mo><mi>R</mi></math></span>. This paper deals with some topological properties of spaces <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span>. Some new classification and characterization theorems are proved for these spaces.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 186-196"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.018","citationCount":"0","resultStr":"{\"title\":\"A universal model infinite-dimensional space\",\"authors\":\"T. Banakh ,&nbsp;O. Shabat ,&nbsp;M. Zarichnyi\",\"doi\":\"10.1016/j.top.2009.11.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given an ordinal <span><math><mi>α</mi></math></span> and a pointed topological space <span><math><mi>X</mi></math></span>, we endow <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup><mo>=</mo><mo>∪</mo><mrow><mo>{</mo><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup><mo>:</mo><mi>β</mi><mo>&lt;</mo><mi>α</mi><mo>}</mo></mrow></math></span> with the strongest topology that coincides with the product topology on every subset <span><math><msup><mrow><mi>X</mi></mrow><mrow><mi>β</mi></mrow></msup></math></span> of <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span>, <span><math><mi>β</mi><mo>&lt;</mo><mi>α</mi></math></span>. It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span> for <span><math><mi>X</mi><mo>=</mo><mi>I</mi><mo>,</mo><mi>R</mi></math></span>. This paper deals with some topological properties of spaces <span><math><msup><mrow><mi>X</mi></mrow><mrow><mo>&lt;</mo><mi>α</mi></mrow></msup></math></span>. Some new classification and characterization theorems are proved for these spaces.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 186-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.018\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个有序α和一个点拓扑空间X,我们赋予X<α=∪{Xβ:β<α}在X<α, β<α的每个子集Xβ上与积拓扑重合的最强拓扑。结果表明,对于X=I,R,许多重要的无限维拓扑模型空间(包括不可度量流形的拓扑)可以用X<α形式的空间表示。本文讨论了空间X<α的一些拓扑性质。对这些空间证明了一些新的分类定理和表征定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A universal model infinite-dimensional space

Given an ordinal α and a pointed topological space X, we endow X<α={Xβ:β<α} with the strongest topology that coincides with the product topology on every subset Xβ of X<α, β<α. It turns out that many important model spaces of infinite-dimensional topology (including the topology of non-metrizable manifolds) can be obtained as spaces of the form X<α for X=I,R. This paper deals with some topological properties of spaces X<α. Some new classification and characterization theorems are proved for these spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信