{"title":"用Leray-Schauder不动点法分析非线性算子方程的解集","authors":"Anatoliy K. Prykarpatsky , Denis Blackmore","doi":"10.1016/j.top.2009.11.017","DOIUrl":null,"url":null,"abstract":"<div><p>Here we study the solution set of a nonlinear operator equation in a Banach subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> by reducing it to a Leray–Schauder type fixed point problem. The subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is of finite codimension <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> in <span><math><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with <span><math><mi>X</mi></math></span> an infinite compact Hausdorff space, and is defined by conditions <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mstyle><mi>d</mi></mstyle><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>f</mi><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with norms <span><math><mrow><mo>‖</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>‖</mo></mrow><mo>=</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 182-185"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.017","citationCount":"4","resultStr":"{\"title\":\"A solution set analysis of a nonlinear operator equation using a Leray–Schauder type fixed point approach\",\"authors\":\"Anatoliy K. Prykarpatsky , Denis Blackmore\",\"doi\":\"10.1016/j.top.2009.11.017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Here we study the solution set of a nonlinear operator equation in a Banach subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>⊂</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span> by reducing it to a Leray–Schauder type fixed point problem. The subspace <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is of finite codimension <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span> in <span><math><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with <span><math><mi>X</mi></math></span> an infinite compact Hausdorff space, and is defined by conditions <span><math><msubsup><mrow><mi>α</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>≔</mo><msub><mrow><mo>∫</mo></mrow><mrow><mi>X</mi></mrow></msub><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mstyle><mi>d</mi></mstyle><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>f</mi><mo>∈</mo><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>, with norms <span><math><mrow><mo>‖</mo><msub><mrow><mi>μ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>‖</mo></mrow><mo>=</mo><mn>1</mn><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 182-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.017\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000299\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A solution set analysis of a nonlinear operator equation using a Leray–Schauder type fixed point approach
Here we study the solution set of a nonlinear operator equation in a Banach subspace by reducing it to a Leray–Schauder type fixed point problem. The subspace is of finite codimension in , with an infinite compact Hausdorff space, and is defined by conditions , with norms .