一致代数上的插值序列

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.009
Pablo Galindo , Mikael Lindström , Alejandro Miralles
{"title":"一致代数上的插值序列","authors":"Pablo Galindo ,&nbsp;Mikael Lindström ,&nbsp;Alejandro Miralles","doi":"10.1016/j.top.2009.11.009","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the problem of whether a given interpolating sequence for a uniform algebra yields linear interpolation. A positive answer is obtained when we deal with dual uniform algebras. Further we prove that if the Carleson generalized condition is sufficient for a sequence to be interpolating on the algebra of bounded analytic functions on the unit ball of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, then it is sufficient for any dual uniform algebra.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 111-118"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.009","citationCount":"7","resultStr":"{\"title\":\"Interpolating sequences on uniform algebras\",\"authors\":\"Pablo Galindo ,&nbsp;Mikael Lindström ,&nbsp;Alejandro Miralles\",\"doi\":\"10.1016/j.top.2009.11.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the problem of whether a given interpolating sequence for a uniform algebra yields linear interpolation. A positive answer is obtained when we deal with dual uniform algebras. Further we prove that if the Carleson generalized condition is sufficient for a sequence to be interpolating on the algebra of bounded analytic functions on the unit ball of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>, then it is sufficient for any dual uniform algebra.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 111-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.009\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000214\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑一个一致代数的给定插值序列是否产生线性插值的问题。当我们处理对偶一致代数时,得到一个正的答案。进一步证明了如果Carleson广义条件足以使序列内插到单位球c上有界解析函数的代数上,则它对任何对偶一致代数都是充分的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interpolating sequences on uniform algebras

We consider the problem of whether a given interpolating sequence for a uniform algebra yields linear interpolation. A positive answer is obtained when we deal with dual uniform algebras. Further we prove that if the Carleson generalized condition is sufficient for a sequence to be interpolating on the algebra of bounded analytic functions on the unit ball of c0, then it is sufficient for any dual uniform algebra.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信