{"title":"容量单子的功能表示","authors":"Taras Radul","doi":"10.1016/j.top.2009.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>We show that the capacity monad has a functional representation, i.e. the space of capacities on a compactum <span><math><mi>X</mi></math></span> can be naturally embedded (with preservation of the monad structure) in some space of functionals on <span><math><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>. We also describe this space of functionals in terms of properties of functionals. Using such a representation we obtain some results about geometric properties of the capacity monad.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 100-104"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.007","citationCount":"9","resultStr":"{\"title\":\"A functional representation of capacity monad\",\"authors\":\"Taras Radul\",\"doi\":\"10.1016/j.top.2009.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that the capacity monad has a functional representation, i.e. the space of capacities on a compactum <span><math><mi>X</mi></math></span> can be naturally embedded (with preservation of the monad structure) in some space of functionals on <span><math><mi>C</mi><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></math></span>. We also describe this space of functionals in terms of properties of functionals. Using such a representation we obtain some results about geometric properties of the capacity monad.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 100-104\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.007\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We show that the capacity monad has a functional representation, i.e. the space of capacities on a compactum can be naturally embedded (with preservation of the monad structure) in some space of functionals on . We also describe this space of functionals in terms of properties of functionals. Using such a representation we obtain some results about geometric properties of the capacity monad.