第二Hirzebruch曲面分支曲线补的基群

Topology Pub Date : 2009-03-01 DOI:10.1016/j.top.2009.03.002
Meirav Amram, Michael Friedman, Mina Teicher
{"title":"第二Hirzebruch曲面分支曲线补的基群","authors":"Meirav Amram,&nbsp;Michael Friedman,&nbsp;Mina Teicher","doi":"10.1016/j.top.2009.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we prove that the Hirzebruch surface <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></msub></math></span> embedded in <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>17</mn></mrow></msup></math></span> supports the conjecture on the structure and properties of fundamental groups of complement of branch curves of generic projections, as laid out in [M. Teicher, New Invariants for surfaces, Contemp. Math. 231 (1999) 271–281]. We use the regeneration from [M. Friedman, M. Teicher, The regeneration of a 5-point, Pure and Applied Mathematics Quarterly 4 (2) (2008) 383–425. Fedor Bogomolov special issue, part I], the van Kampen theorem and properties of <span><math><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span>-groups [M. Teicher, On the quotient of the braid group by commutators of transversal half-twists and its group actions, Topology Appl. 78 (1997) 153–186], where <span><math><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a quotient of the braid group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, for <span><math><mi>n</mi><mo>=</mo><mn>16</mn></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 1","pages":"Pages 23-40"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.03.002","citationCount":"9","resultStr":"{\"title\":\"The fundamental group of the complement of the branch curve of the second Hirzebruch surface\",\"authors\":\"Meirav Amram,&nbsp;Michael Friedman,&nbsp;Mina Teicher\",\"doi\":\"10.1016/j.top.2009.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we prove that the Hirzebruch surface <span><math><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn><mo>,</mo><mrow><mo>(</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></mrow></msub></math></span> embedded in <span><math><mi>C</mi><msup><mrow><mi>P</mi></mrow><mrow><mn>17</mn></mrow></msup></math></span> supports the conjecture on the structure and properties of fundamental groups of complement of branch curves of generic projections, as laid out in [M. Teicher, New Invariants for surfaces, Contemp. Math. 231 (1999) 271–281]. We use the regeneration from [M. Friedman, M. Teicher, The regeneration of a 5-point, Pure and Applied Mathematics Quarterly 4 (2) (2008) 383–425. Fedor Bogomolov special issue, part I], the van Kampen theorem and properties of <span><math><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span>-groups [M. Teicher, On the quotient of the braid group by commutators of transversal half-twists and its group actions, Topology Appl. 78 (1997) 153–186], where <span><math><msub><mrow><mover><mrow><mi>B</mi></mrow><mrow><mo>̃</mo></mrow></mover></mrow><mrow><mi>n</mi></mrow></msub></math></span> is a quotient of the braid group <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, for <span><math><mi>n</mi><mo>=</mo><mn>16</mn></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 1\",\"pages\":\"Pages 23-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.03.002\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文证明了嵌入在CP17中的Hirzebruch曲面F2,(2,2)支持文献[M]中关于一般投影分支曲线补基群的结构和性质的猜想。Teicher,曲面的新不变量,当代。数学。231(1999)271-281。我们使用[M。弗里德曼,M. Teicher, 5点的再生,纯数学与应用数学季刊4(2)(2008)383-425。Fedor Bogomolov专刊,第1部分],van Kampen定理与B n群的性质[M]。Teicher,关于横向半扭转换向子对编织群的商及其群作用,拓扑应用,78(1997)153-186],其中Bn是编织群Bn的商,对于n=16。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The fundamental group of the complement of the branch curve of the second Hirzebruch surface

In this paper we prove that the Hirzebruch surface F2,(2,2) embedded in CP17 supports the conjecture on the structure and properties of fundamental groups of complement of branch curves of generic projections, as laid out in [M. Teicher, New Invariants for surfaces, Contemp. Math. 231 (1999) 271–281]. We use the regeneration from [M. Friedman, M. Teicher, The regeneration of a 5-point, Pure and Applied Mathematics Quarterly 4 (2) (2008) 383–425. Fedor Bogomolov special issue, part I], the van Kampen theorem and properties of B̃n-groups [M. Teicher, On the quotient of the braid group by commutators of transversal half-twists and its group actions, Topology Appl. 78 (1997) 153–186], where B̃n is a quotient of the braid group Bn, for n=16.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信