幂零群的平均Dehn函数

Topology Pub Date : 2008-09-01 DOI:10.1016/j.top.2007.09.003
Robert Young
{"title":"幂零群的平均Dehn函数","authors":"Robert Young","doi":"10.1016/j.top.2007.09.003","DOIUrl":null,"url":null,"abstract":"<div><p>Gromov proposed an averaged version of the Dehn function and claimed that in many cases it should be subasymptotic to the Dehn function. Using results on random walks in nilpotent groups, we confirm this claim for most nilpotent groups. In particular, if a nilpotent group satisfies the isoperimetric inequality <span><math><mi>δ</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow><mo>&lt;</mo><mi>C</mi><msup><mrow><mi>l</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for <span><math><mi>α</mi><mo>&gt;</mo><mn>2</mn></math></span>, then it satisfies the averaged isoperimetric inequality <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mstyle><mi>avg</mi></mstyle></mrow></msup><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow><mo>&lt;</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. In the case of non-abelian free nilpotent groups, the bounds we give are asymptotically sharp.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 5","pages":"Pages 351-367"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.09.003","citationCount":"12","resultStr":"{\"title\":\"Averaged Dehn functions for nilpotent groups\",\"authors\":\"Robert Young\",\"doi\":\"10.1016/j.top.2007.09.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Gromov proposed an averaged version of the Dehn function and claimed that in many cases it should be subasymptotic to the Dehn function. Using results on random walks in nilpotent groups, we confirm this claim for most nilpotent groups. In particular, if a nilpotent group satisfies the isoperimetric inequality <span><math><mi>δ</mi><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow><mo>&lt;</mo><mi>C</mi><msup><mrow><mi>l</mi></mrow><mrow><mi>α</mi></mrow></msup></math></span> for <span><math><mi>α</mi><mo>&gt;</mo><mn>2</mn></math></span>, then it satisfies the averaged isoperimetric inequality <span><math><msup><mrow><mi>δ</mi></mrow><mrow><mstyle><mi>avg</mi></mstyle></mrow></msup><mrow><mo>(</mo><mi>l</mi><mo>)</mo></mrow><mo>&lt;</mo><msup><mrow><mi>C</mi></mrow><mrow><mo>′</mo></mrow></msup><msup><mrow><mi>l</mi></mrow><mrow><mi>α</mi><mo>/</mo><mn>2</mn></mrow></msup></math></span>. In the case of non-abelian free nilpotent groups, the bounds we give are asymptotically sharp.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 5\",\"pages\":\"Pages 351-367\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.09.003\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

Gromov提出了Dehn函数的平均版本,并声称在许多情况下它应该是Dehn函数的亚渐近。利用幂零组随机漫步的结果,我们对大多数幂零组证实了这一说法。特别地,如果幂零群对α>2满足等周不等式δ(l)<Clα,则它满足平均等周不等式δavg(l)<C 'lα /2。对于非阿贝尔自由幂零群,我们给出的界是渐近尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Averaged Dehn functions for nilpotent groups

Gromov proposed an averaged version of the Dehn function and claimed that in many cases it should be subasymptotic to the Dehn function. Using results on random walks in nilpotent groups, we confirm this claim for most nilpotent groups. In particular, if a nilpotent group satisfies the isoperimetric inequality δ(l)<Clα for α>2, then it satisfies the averaged isoperimetric inequality δavg(l)<Clα/2. In the case of non-abelian free nilpotent groups, the bounds we give are asymptotically sharp.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信