量子d模与广义镜像变换

Topology Pub Date : 2008-09-01 DOI:10.1016/j.top.2007.07.001
Hiroshi Iritani
{"title":"量子d模与广义镜像变换","authors":"Hiroshi Iritani","doi":"10.1016/j.top.2007.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the previous paper [Hiroshi Iritani, Quantum <span><math><mi>D</mi></math></span>-modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum <span><math><mi>D</mi></math></span>-module after a mirror transformation when the first Chern class <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> of the tangent bundle is nef. In this paper, even when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum <span><math><mi>D</mi></math></span>-module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 4","pages":"Pages 225-276"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.07.001","citationCount":"61","resultStr":"{\"title\":\"Quantum D-modules and generalized mirror transformations\",\"authors\":\"Hiroshi Iritani\",\"doi\":\"10.1016/j.top.2007.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the previous paper [Hiroshi Iritani, Quantum <span><math><mi>D</mi></math></span>-modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum <span><math><mi>D</mi></math></span>-module after a mirror transformation when the first Chern class <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> of the tangent bundle is nef. In this paper, even when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum <span><math><mi>D</mi></math></span>-module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 4\",\"pages\":\"Pages 225-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.07.001\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

在先前的论文[Hiroshi Iritani,量子d模和自由循环空间的等变Floer理论],数学。Z. 252(3)(2006) 577-622],定义了环簇中完全交的等变Floer上同构,并证明了当切束的第一个Chern类c1(M)为nef时,经镜像变换后与小量子d模同构。在本文中,即使c1(M)不是nef,我们也证明了在一定条件下,等变Floer上同调在环面变化上重构了大量子d模。这个证明是基于科茨的镜像定理和给出的[T]。《量子》Riemann - Roch, Lefschetz和Serre, Ann。的数学。(2) 165(1)(2007) 15-53]。本文给出了由Jinzenji在低阶上首次观察到的广义镜像变换[Masao Jinzenji, On一般型射影超曲面的量子上同环和广义镜像变换,Internat]。现代物理学;A 15 (11) (2000) 1557-1595;Masao Jinzenji, gaas - manin系统的坐标变化与广义镜像变换,国际。现代物理学;A 20(10)(2005) 2131-2156]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum D-modules and generalized mirror transformations

In the previous paper [Hiroshi Iritani, Quantum D-modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum D-module after a mirror transformation when the first Chern class c1(M) of the tangent bundle is nef. In this paper, even when c1(M) is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum D-module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信