{"title":"量子d模与广义镜像变换","authors":"Hiroshi Iritani","doi":"10.1016/j.top.2007.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>In the previous paper [Hiroshi Iritani, Quantum <span><math><mi>D</mi></math></span>-modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum <span><math><mi>D</mi></math></span>-module after a mirror transformation when the first Chern class <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> of the tangent bundle is nef. In this paper, even when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum <span><math><mi>D</mi></math></span>-module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 4","pages":"Pages 225-276"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.07.001","citationCount":"61","resultStr":"{\"title\":\"Quantum D-modules and generalized mirror transformations\",\"authors\":\"Hiroshi Iritani\",\"doi\":\"10.1016/j.top.2007.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the previous paper [Hiroshi Iritani, Quantum <span><math><mi>D</mi></math></span>-modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum <span><math><mi>D</mi></math></span>-module after a mirror transformation when the first Chern class <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> of the tangent bundle is nef. In this paper, even when <span><math><msub><mrow><mi>c</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></math></span> is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum <span><math><mi>D</mi></math></span>-module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 4\",\"pages\":\"Pages 225-276\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.07.001\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000614\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum D-modules and generalized mirror transformations
In the previous paper [Hiroshi Iritani, Quantum -modules and equivariant Floer theory for free loop spaces, Math. Z. 252 (3) (2006) 577–622], the author defined equivariant Floer cohomology for a complete intersection in a toric variety and showed that it is isomorphic to the small quantum -module after a mirror transformation when the first Chern class of the tangent bundle is nef. In this paper, even when is not nef, we show that the equivariant Floer cohomology reconstructs the big quantum -module under certain conditions on the ambient toric variety. The proof is based on a mirror theorem of Coates and Givental [T. Coates, A.B. Givental, Quantum Riemann — Roch, Lefschetz and Serre, Ann. of Math. (2) 165 (1) (2007) 15–53]. The reconstruction procedure here gives a generalized mirror transformation first observed by Jinzenji in low degrees [Masao Jinzenji, On the quantum cohomology rings of general type projective hypersurfaces and generalized mirror transformation, Internat. J. Modern Phys. A 15 (11) (2000) 1557–1595; Masao Jinzenji, Co-ordinate change of Gauss–Manin system and generalized mirror transformation, Internat. J. Modern Phys. A 20 (10) (2005) 2131–2156].