零组在定位下的行为和相应的装配图

Topology Pub Date : 2008-05-01 DOI:10.1016/j.top.2007.03.007
Joachim Grunewald
{"title":"零组在定位下的行为和相应的装配图","authors":"Joachim Grunewald","doi":"10.1016/j.top.2007.03.007","DOIUrl":null,"url":null,"abstract":"<div><p>We study the behavior of the Nil-subgroups of <span><math><mi>K</mi></math></span>-groups under localization. As a consequence of our results, we obtain that the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups is rationally an isomorphism. Combined with the equivariant Chern character, we obtain a complete computation of the rationalized source of the <span><math><mi>K</mi></math></span>-theoretic assembly map that appears in the Farrell–Jones conjecture in terms of group homology and the <span><math><mi>K</mi></math></span>-groups of finite cyclic subgroups.</p><p>Specifically we prove that under mild assumptions we can always write the Nil-groups and End-groups of the localized ring as a certain colimit over the Nil-groups and End-groups of the ring, generalizing a result of Vorst. We define Frobenius and Verschiebung operations on certain Nil-groups. These operations provide the tool to prove that Nil-groups are modules over the ring of Witt-vectors and are either trivial or not finitely generated as Abelian groups. Combining the localization results with the Witt-vector module structure, we obtain that Nil and localization at an appropriate multiplicatively closed set <span><math><mi>S</mi></math></span> commute, i.e. <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mstyle><mi>Nil</mi></mstyle><mo>=</mo><mstyle><mi>Nil</mi></mstyle><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. An important corollary is that the Nil-groups appearing in the decomposition of the <span><math><mi>K</mi></math></span>-groups of virtually cyclic groups are torsion groups.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 3","pages":"Pages 160-202"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.03.007","citationCount":"19","resultStr":"{\"title\":\"The behavior of Nil-groups under localization and the relative assembly map\",\"authors\":\"Joachim Grunewald\",\"doi\":\"10.1016/j.top.2007.03.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the behavior of the Nil-subgroups of <span><math><mi>K</mi></math></span>-groups under localization. As a consequence of our results, we obtain that the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups is rationally an isomorphism. Combined with the equivariant Chern character, we obtain a complete computation of the rationalized source of the <span><math><mi>K</mi></math></span>-theoretic assembly map that appears in the Farrell–Jones conjecture in terms of group homology and the <span><math><mi>K</mi></math></span>-groups of finite cyclic subgroups.</p><p>Specifically we prove that under mild assumptions we can always write the Nil-groups and End-groups of the localized ring as a certain colimit over the Nil-groups and End-groups of the ring, generalizing a result of Vorst. We define Frobenius and Verschiebung operations on certain Nil-groups. These operations provide the tool to prove that Nil-groups are modules over the ring of Witt-vectors and are either trivial or not finitely generated as Abelian groups. Combining the localization results with the Witt-vector module structure, we obtain that Nil and localization at an appropriate multiplicatively closed set <span><math><mi>S</mi></math></span> commute, i.e. <span><math><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mstyle><mi>Nil</mi></mstyle><mo>=</mo><mstyle><mi>Nil</mi></mstyle><mspace></mspace><msup><mrow><mi>S</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span>. An important corollary is that the Nil-groups appearing in the decomposition of the <span><math><mi>K</mi></math></span>-groups of virtually cyclic groups are torsion groups.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 3\",\"pages\":\"Pages 160-202\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.03.007\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

研究了k群在局部化条件下的n -子群的行为。结果表明,有限子群族到虚循环子群族的相对组合映射是同构的。结合等变Chern特征,给出了Farrell-Jones猜想中出现的k -理论组合映射在群同调和有限循环子群的k群方面的合理化源的完整计算。具体地,我们证明了在温和的假设下,我们总是可以将定域环的零群和端群写成环的零群和端群上的一个极限,从而推广了Vorst的结果。我们定义了某些nil群上的Frobenius和Verschiebung运算。这些运算提供了证明nil群是witt向量环上的模,并且是平凡的或者不是作为阿贝尔群有限生成的工具。将定位结果与Witt-vector模块结构相结合,得到Nil与定位在适当的乘性闭集S上可交换,即S−1Nil=NilS−1。一个重要的推论是虚环群的k群分解中出现的nil群是扭转群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The behavior of Nil-groups under localization and the relative assembly map

We study the behavior of the Nil-subgroups of K-groups under localization. As a consequence of our results, we obtain that the relative assembly map from the family of finite subgroups to the family of virtually cyclic subgroups is rationally an isomorphism. Combined with the equivariant Chern character, we obtain a complete computation of the rationalized source of the K-theoretic assembly map that appears in the Farrell–Jones conjecture in terms of group homology and the K-groups of finite cyclic subgroups.

Specifically we prove that under mild assumptions we can always write the Nil-groups and End-groups of the localized ring as a certain colimit over the Nil-groups and End-groups of the ring, generalizing a result of Vorst. We define Frobenius and Verschiebung operations on certain Nil-groups. These operations provide the tool to prove that Nil-groups are modules over the ring of Witt-vectors and are either trivial or not finitely generated as Abelian groups. Combining the localization results with the Witt-vector module structure, we obtain that Nil and localization at an appropriate multiplicatively closed set S commute, i.e. S1Nil=NilS1. An important corollary is that the Nil-groups appearing in the decomposition of the K-groups of virtually cyclic groups are torsion groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信