关于R上函数集的稠密线性性

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.013
R.M. Aron , F.J. García-Pacheco , D. Pérez-García , J.B. Seoane-Sepúlveda
{"title":"关于R上函数集的稠密线性性","authors":"R.M. Aron ,&nbsp;F.J. García-Pacheco ,&nbsp;D. Pérez-García ,&nbsp;J.B. Seoane-Sepúlveda","doi":"10.1016/j.top.2009.11.013","DOIUrl":null,"url":null,"abstract":"<div><p>A subset <span><math><mi>M</mi></math></span> of a topological vector space <span><math><mi>X</mi></math></span> is said to be dense-lineable in <span><math><mi>X</mi></math></span> if there exists an infinite dimensional linear manifold in <span><math><mi>M</mi><mo>∪</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span> and dense in <span><math><mi>X</mi></math></span>. We give sufficient conditions for a lineable set to be dense-lineable, and we apply them to prove the dense-lineability of several subsets of <span><math><mi>C</mi><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. We also develop some techniques to show that the set of differentiable nowhere monotone functions is dense-lineable in <span><math><mi>C</mi><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. Other results related to density and dense-lineability of sets in Banach spaces are also presented.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 149-156"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.013","citationCount":"73","resultStr":"{\"title\":\"On dense-lineability of sets of functions on R\",\"authors\":\"R.M. Aron ,&nbsp;F.J. García-Pacheco ,&nbsp;D. Pérez-García ,&nbsp;J.B. Seoane-Sepúlveda\",\"doi\":\"10.1016/j.top.2009.11.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A subset <span><math><mi>M</mi></math></span> of a topological vector space <span><math><mi>X</mi></math></span> is said to be dense-lineable in <span><math><mi>X</mi></math></span> if there exists an infinite dimensional linear manifold in <span><math><mi>M</mi><mo>∪</mo><mrow><mo>{</mo><mn>0</mn><mo>}</mo></mrow></math></span> and dense in <span><math><mi>X</mi></math></span>. We give sufficient conditions for a lineable set to be dense-lineable, and we apply them to prove the dense-lineability of several subsets of <span><math><mi>C</mi><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. We also develop some techniques to show that the set of differentiable nowhere monotone functions is dense-lineable in <span><math><mi>C</mi><mrow><mo>[</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>]</mo></mrow></math></span>. Other results related to density and dense-lineability of sets in Banach spaces are also presented.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 149-156\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.013\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

如果在M∪{0}中存在一个无限维线性流形,且在X中存在一个稠密的流形,则称拓扑向量空间X的子集M在X中是稠密可列的。我们给出了一个可列集是稠密可列的充分条件,并应用这些条件证明了C[A,b]的几个子集的稠密可列性。我们也发展了一些技术来证明无处可微单调函数集在C[a,b]中是密列的。本文还给出了与Banach空间中集合的密度和密集线性性有关的其他结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On dense-lineability of sets of functions on R

A subset M of a topological vector space X is said to be dense-lineable in X if there exists an infinite dimensional linear manifold in M{0} and dense in X. We give sufficient conditions for a lineable set to be dense-lineable, and we apply them to prove the dense-lineability of several subsets of C[a,b]. We also develop some techniques to show that the set of differentiable nowhere monotone functions is dense-lineable in C[a,b]. Other results related to density and dense-lineability of sets in Banach spaces are also presented.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信