概率测度集上的模糊超测度

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.011
Aleksandr Savchenko , Mykhailo Zarichnyi
{"title":"概率测度集上的模糊超测度","authors":"Aleksandr Savchenko ,&nbsp;Mykhailo Zarichnyi","doi":"10.1016/j.top.2009.11.011","DOIUrl":null,"url":null,"abstract":"<div><p>We introduce a fuzzy ultrametric on the set of probability measures with compact support defined on a fuzzy metric space. The construction is a counterpart, in the realm of fuzzy ultrametric spaces, of the construction due to Vink and Rutten of an ultrametric on the set of probability measures with compact supports on an ultrametric space.</p><p>It is proved that the set of probability measures with finite supports is dense in the natural topology generated by the defined fuzzy ultrametric.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 130-136"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.011","citationCount":"21","resultStr":"{\"title\":\"Fuzzy ultrametrics on the set of probability measures\",\"authors\":\"Aleksandr Savchenko ,&nbsp;Mykhailo Zarichnyi\",\"doi\":\"10.1016/j.top.2009.11.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We introduce a fuzzy ultrametric on the set of probability measures with compact support defined on a fuzzy metric space. The construction is a counterpart, in the realm of fuzzy ultrametric spaces, of the construction due to Vink and Rutten of an ultrametric on the set of probability measures with compact supports on an ultrametric space.</p><p>It is proved that the set of probability measures with finite supports is dense in the natural topology generated by the defined fuzzy ultrametric.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 130-136\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.011\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

在模糊度量空间上定义了具有紧支持的概率测度集,引入了一个模糊超度量。在模糊超度量空间中,该构造与Vink和Rutten在超度量空间中紧支撑的概率测度集合上的超度量构造是对等的。证明了由定义的模糊超度量生成的自然拓扑中具有有限支持的概率测度集是密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy ultrametrics on the set of probability measures

We introduce a fuzzy ultrametric on the set of probability measures with compact support defined on a fuzzy metric space. The construction is a counterpart, in the realm of fuzzy ultrametric spaces, of the construction due to Vink and Rutten of an ultrametric on the set of probability measures with compact supports on an ultrametric space.

It is proved that the set of probability measures with finite supports is dense in the natural topology generated by the defined fuzzy ultrametric.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信