实线的微分同态群是成对双同胚的

Topology Pub Date : 2009-06-01 DOI:10.1016/j.top.2009.11.010
Taras Banakh , Tatsuhiko Yagasaki
{"title":"实线的微分同态群是成对双同胚的","authors":"Taras Banakh ,&nbsp;Tatsuhiko Yagasaki","doi":"10.1016/j.top.2009.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>For an <span><math><mi>r</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>∞</mi></math></span>, by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span> we denote respectively the groups of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, orientation-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, and compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology and the Whitney <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology. We prove that all the triples <span><math><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>∞</mi></math></span>, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of <span><math><mi>R</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 119-129"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.010","citationCount":"5","resultStr":"{\"title\":\"The diffeomorphism groups of the real line are pairwise bihomeomorphic\",\"authors\":\"Taras Banakh ,&nbsp;Tatsuhiko Yagasaki\",\"doi\":\"10.1016/j.top.2009.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an <span><math><mi>r</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>∞</mi></math></span>, by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span> we denote respectively the groups of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, orientation-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, and compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology and the Whitney <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology. We prove that all the triples <span><math><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>∞</mi></math></span>, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of <span><math><mi>R</mi></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 119-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.010\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

对于r=0,1,…,∞,用Dr(r), D+r(r), Dcr(r)分别表示实直线上的Cr微同态群,保向Cr微同态群,紧支持Cr微同态群。我们认为这些群是具有紧开Cr拓扑和Whitney Cr拓扑的双拓扑空间。证明了0≤R≤∞的所有三元组(Dr(R),D+ R (R),Dcr(R))是对双拓扑等价的,这使得我们可以将实线上同胚群拓扑结构的已知结果应用于识别R上的异胚群拓扑结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The diffeomorphism groups of the real line are pairwise bihomeomorphic

For an r=0,1,,, by Dr(R), D+r(R), Dcr(R) we denote respectively the groups of Cr diffeomorphisms, orientation-preserving Cr diffeomorphisms, and compactly supported Cr diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open Cr topology and the Whitney Cr topology. We prove that all the triples (Dr(R),D+r(R),Dcr(R)), 0r, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of R.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信