{"title":"实线的微分同态群是成对双同胚的","authors":"Taras Banakh , Tatsuhiko Yagasaki","doi":"10.1016/j.top.2009.11.010","DOIUrl":null,"url":null,"abstract":"<div><p>For an <span><math><mi>r</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>∞</mi></math></span>, by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span> we denote respectively the groups of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, orientation-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, and compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology and the Whitney <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology. We prove that all the triples <span><math><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>∞</mi></math></span>, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of <span><math><mi>R</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"48 2","pages":"Pages 119-129"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2009.11.010","citationCount":"5","resultStr":"{\"title\":\"The diffeomorphism groups of the real line are pairwise bihomeomorphic\",\"authors\":\"Taras Banakh , Tatsuhiko Yagasaki\",\"doi\":\"10.1016/j.top.2009.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For an <span><math><mi>r</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>∞</mi></math></span>, by <span><math><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span>, <span><math><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></math></span> we denote respectively the groups of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, orientation-preserving <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms, and compactly supported <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology and the Whitney <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>r</mi></mrow></msup></math></span> topology. We prove that all the triples <span><math><mrow><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mi>r</mi></mrow></msup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mo>+</mo></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>,</mo><msubsup><mrow><mi>D</mi></mrow><mrow><mi>c</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>)</mo></mrow></math></span>, <span><math><mn>0</mn><mo>≤</mo><mi>r</mi><mo>≤</mo><mi>∞</mi></math></span>, are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of <span><math><mi>R</mi></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"48 2\",\"pages\":\"Pages 119-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2009.11.010\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938309000226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938309000226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
对于r=0,1,…,∞,用Dr(r), D+r(r), Dcr(r)分别表示实直线上的Cr微同态群,保向Cr微同态群,紧支持Cr微同态群。我们认为这些群是具有紧开Cr拓扑和Whitney Cr拓扑的双拓扑空间。证明了0≤R≤∞的所有三元组(Dr(R),D+ R (R),Dcr(R))是对双拓扑等价的,这使得我们可以将实线上同胚群拓扑结构的已知结果应用于识别R上的异胚群拓扑结构。
The diffeomorphism groups of the real line are pairwise bihomeomorphic
For an , by , , we denote respectively the groups of diffeomorphisms, orientation-preserving diffeomorphisms, and compactly supported diffeomorphisms of the real line. We think of these groups as bitopologies spaces endowed with the compact-open topology and the Whitney topology. We prove that all the triples , , are pairwise bitopologically equivalent, which allows us to apply known results on the topological structure of homeomorphism groups of the real line to recognizing the topological structure of the diffeomorphism groups of .