将结空间的无限循环覆盖嵌入到三维空间中

Topology Pub Date : 2006-07-01 DOI:10.1016/j.top.2006.01.005
Boju Jiang , Yi Ni , Shicheng Wang , Qing Zhou
{"title":"将结空间的无限循环覆盖嵌入到三维空间中","authors":"Boju Jiang ,&nbsp;Yi Ni ,&nbsp;Shicheng Wang ,&nbsp;Qing Zhou","doi":"10.1016/j.top.2006.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>We say a knot <span><math><mi>k</mi></math></span> in the 3-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> has <em>Property</em> <span><math><mi>I</mi><mi>E</mi></math></span> if the infinite cyclic cover of the knot exterior embeds into <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Clearly all fibred knots have Property <span><math><mi>I</mi><mi>E</mi></math></span>.</p><p>There are infinitely many non-fibred knots with Property <span><math><mi>I</mi><mi>E</mi></math></span> and infinitely many non-fibred knots without property <span><math><mi>I</mi><mi>E</mi></math></span>. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property <span><math><mi>I</mi><mi>E</mi></math></span>, then its Alexander polynomial <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math></span> must be either 1 or <span><math><mn>2</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>5</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span>, and we give two infinite families of non-fibred genus 1 knots with Property <span><math><mi>I</mi><mi>E</mi></math></span> and having <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>2</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>5</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> respectively.</p><p>Hence among genus 1 non-fibred knots, no alternating knot has Property <span><math><mi>I</mi><mi>E</mi></math></span>, and there is only one knot with Property <span><math><mi>I</mi><mi>E</mi></math></span> up to ten crossings.</p><p>We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 4","pages":"Pages 691-705"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.01.005","citationCount":"5","resultStr":"{\"title\":\"Embedding infinite cyclic covers of knot spaces into 3-space\",\"authors\":\"Boju Jiang ,&nbsp;Yi Ni ,&nbsp;Shicheng Wang ,&nbsp;Qing Zhou\",\"doi\":\"10.1016/j.top.2006.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We say a knot <span><math><mi>k</mi></math></span> in the 3-sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> has <em>Property</em> <span><math><mi>I</mi><mi>E</mi></math></span> if the infinite cyclic cover of the knot exterior embeds into <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. Clearly all fibred knots have Property <span><math><mi>I</mi><mi>E</mi></math></span>.</p><p>There are infinitely many non-fibred knots with Property <span><math><mi>I</mi><mi>E</mi></math></span> and infinitely many non-fibred knots without property <span><math><mi>I</mi><mi>E</mi></math></span>. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property <span><math><mi>I</mi><mi>E</mi></math></span>, then its Alexander polynomial <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow></math></span> must be either 1 or <span><math><mn>2</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>5</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span>, and we give two infinite families of non-fibred genus 1 knots with Property <span><math><mi>I</mi><mi>E</mi></math></span> and having <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn></math></span> and <span><math><mn>2</mn><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><mn>5</mn><mi>t</mi><mo>+</mo><mn>2</mn></math></span> respectively.</p><p>Hence among genus 1 non-fibred knots, no alternating knot has Property <span><math><mi>I</mi><mi>E</mi></math></span>, and there is only one knot with Property <span><math><mi>I</mi><mi>E</mi></math></span> up to ten crossings.</p><p>We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 4\",\"pages\":\"Pages 691-705\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.01.005\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

如果结外部的无限循环覆盖嵌入到S3中,我们说3球S3中的结k具有属性IE。显然,所有纤维结都具有属性IE。有无限多个具有IE属性的非纤维结和无限多个不具有IE属性的非纤维结。这两种例子在这里都是首次建立。事实上,我们证明了如果一个属1的非纤维结具有性质IE,那么它的亚历山大多项式Δk(t)必须是1或2t2−5t+2,并且我们给出了两个无限族的非纤维属1的结具有性质IE并且分别具有Δk(t)=1和2t2−5t+2。因此,在1属非纤维结中,没有交替结具有IE属性,只有一个结具有10个交叉的IE属性。给出了紧3流形无限循环盖嵌入任意紧3流形的一个障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding infinite cyclic covers of knot spaces into 3-space

We say a knot k in the 3-sphere S3 has Property IE if the infinite cyclic cover of the knot exterior embeds into S3. Clearly all fibred knots have Property IE.

There are infinitely many non-fibred knots with Property IE and infinitely many non-fibred knots without property IE. Both kinds of examples are established here for the first time. Indeed we show that if a genus 1 non-fibred knot has Property IE, then its Alexander polynomial Δk(t) must be either 1 or 2t25t+2, and we give two infinite families of non-fibred genus 1 knots with Property IE and having Δk(t)=1 and 2t25t+2 respectively.

Hence among genus 1 non-fibred knots, no alternating knot has Property IE, and there is only one knot with Property IE up to ten crossings.

We also give an obstruction to embedding infinite cyclic covers of a compact 3-manifold into any compact 3-manifold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信