相对双曲,分类空间,和下代数k理论

Topology Pub Date : 2007-11-01 DOI:10.1016/j.top.2007.03.001
Jean-François Lafont , Ivonne J. Ortiz
{"title":"相对双曲,分类空间,和下代数k理论","authors":"Jean-François Lafont ,&nbsp;Ivonne J. Ortiz","doi":"10.1016/j.top.2007.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>Γ</mi></math></span> a relatively hyperbolic group, we construct a model for the universal space among <span><math><mi>Γ</mi></math></span>-spaces with isotropy on the family <span><math><mi>V</mi><mi>C</mi></math></span> of virtually cyclic subgroups of <span><math><mi>Γ</mi></math></span>. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mstyle><mi>Isom</mi></mstyle><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span>. We use the information we obtain to explicitly compute the lower algebraic <span><math><mi>K</mi></math></span>-theory of the Coxeter group <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (a non-uniform lattice in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>). Part of this computation involves calculating certain Waldhausen Nil-groups for <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></math></span>, <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>]</mo></mrow></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 6","pages":"Pages 527-553"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.03.001","citationCount":"29","resultStr":"{\"title\":\"Relative hyperbolicity, classifying spaces, and lower algebraic K-theory\",\"authors\":\"Jean-François Lafont ,&nbsp;Ivonne J. Ortiz\",\"doi\":\"10.1016/j.top.2007.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>Γ</mi></math></span> a relatively hyperbolic group, we construct a model for the universal space among <span><math><mi>Γ</mi></math></span>-spaces with isotropy on the family <span><math><mi>V</mi><mi>C</mi></math></span> of virtually cyclic subgroups of <span><math><mi>Γ</mi></math></span>. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mstyle><mi>Isom</mi></mstyle><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span>. We use the information we obtain to explicitly compute the lower algebraic <span><math><mi>K</mi></math></span>-theory of the Coxeter group <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (a non-uniform lattice in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>). Part of this computation involves calculating certain Waldhausen Nil-groups for <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></math></span>, <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>]</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 6\",\"pages\":\"Pages 527-553\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.03.001\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

对于Γ一个相对双曲群,我们在Γ的虚循环子群的VC族上构造了Γ-spaces间具有各向同性的泛空间模型。给出了O+(n,1)=Isom(Hn)中Coxeter群的极大无限虚循环子群的判别方法。我们使用我们获得的信息来显式计算Coxeter群Γ3 (O+(3,1)中的非均匀晶格)的下代数k理论。部分计算涉及计算Z[D2], Z[D3]的某些Waldhausen nil群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Relative hyperbolicity, classifying spaces, and lower algebraic K-theory

For Γ a relatively hyperbolic group, we construct a model for the universal space among Γ-spaces with isotropy on the family VC of virtually cyclic subgroups of Γ. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in O+(n,1)=Isom(Hn). We use the information we obtain to explicitly compute the lower algebraic K-theory of the Coxeter group Γ3 (a non-uniform lattice in O+(3,1)). Part of this computation involves calculating certain Waldhausen Nil-groups for Z[D2], Z[D3].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信