{"title":"相对双曲,分类空间,和下代数k理论","authors":"Jean-François Lafont , Ivonne J. Ortiz","doi":"10.1016/j.top.2007.03.001","DOIUrl":null,"url":null,"abstract":"<div><p>For <span><math><mi>Γ</mi></math></span> a relatively hyperbolic group, we construct a model for the universal space among <span><math><mi>Γ</mi></math></span>-spaces with isotropy on the family <span><math><mi>V</mi><mi>C</mi></math></span> of virtually cyclic subgroups of <span><math><mi>Γ</mi></math></span>. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mstyle><mi>Isom</mi></mstyle><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span>. We use the information we obtain to explicitly compute the lower algebraic <span><math><mi>K</mi></math></span>-theory of the Coxeter group <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (a non-uniform lattice in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>). Part of this computation involves calculating certain Waldhausen Nil-groups for <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></math></span>, <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>]</mo></mrow></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 6","pages":"Pages 527-553"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.03.001","citationCount":"29","resultStr":"{\"title\":\"Relative hyperbolicity, classifying spaces, and lower algebraic K-theory\",\"authors\":\"Jean-François Lafont , Ivonne J. Ortiz\",\"doi\":\"10.1016/j.top.2007.03.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>For <span><math><mi>Γ</mi></math></span> a relatively hyperbolic group, we construct a model for the universal space among <span><math><mi>Γ</mi></math></span>-spaces with isotropy on the family <span><math><mi>V</mi><mi>C</mi></math></span> of virtually cyclic subgroups of <span><math><mi>Γ</mi></math></span>. We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mn>1</mn><mo>)</mo></mrow><mo>=</mo><mstyle><mi>Isom</mi></mstyle><mrow><mo>(</mo><msup><mrow><mi>H</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></math></span>. We use the information we obtain to explicitly compute the lower algebraic <span><math><mi>K</mi></math></span>-theory of the Coxeter group <span><math><msub><mrow><mi>Γ</mi></mrow><mrow><mn>3</mn></mrow></msub></math></span> (a non-uniform lattice in <span><math><msup><mrow><mi>O</mi></mrow><mrow><mo>+</mo></mrow></msup><mrow><mo>(</mo><mn>3</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></math></span>). Part of this computation involves calculating certain Waldhausen Nil-groups for <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>]</mo></mrow></math></span>, <span><math><mi>Z</mi><mrow><mo>[</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>]</mo></mrow></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 6\",\"pages\":\"Pages 527-553\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.03.001\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000134\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relative hyperbolicity, classifying spaces, and lower algebraic K-theory
For a relatively hyperbolic group, we construct a model for the universal space among -spaces with isotropy on the family of virtually cyclic subgroups of . We provide a recipe for identifying the maximal infinite virtually cyclic subgroups of Coxeter groups which are lattices in . We use the information we obtain to explicitly compute the lower algebraic -theory of the Coxeter group (a non-uniform lattice in ). Part of this computation involves calculating certain Waldhausen Nil-groups for , .