简化Delzant空间和一个凸性定理

Topology Pub Date : 2007-11-01 DOI:10.1016/j.top.2007.02.007
Bong H. Lian , Bailin Song
{"title":"简化Delzant空间和一个凸性定理","authors":"Bong H. Lian ,&nbsp;Bailin Song","doi":"10.1016/j.top.2007.02.007","DOIUrl":null,"url":null,"abstract":"<div><p>The convexity theorem of Atiyah and Guillemin–Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of the image of the fixed point set. Sjamaar–Lerman proved that the Marsden–Weinstein reduction of a connected Hamitonian <span><math><mi>G</mi></math></span>-manifold is a stratified symplectic space. Suppose <span><math><mn>1</mn><mo>→</mo><mi>A</mi><mo>→</mo><mi>G</mi><mo>→</mo><mi>T</mi><mo>→</mo><mn>1</mn></math></span> is an exact sequence of compact Lie groups and <span><math><mi>T</mi></math></span> is a torus. Then the reduction of a Hamiltonian <span><math><mi>G</mi></math></span>-manifold with respect to <span><math><mi>A</mi></math></span> yields a Hamiltonian <span><math><mi>T</mi></math></span>-space. We show that if the <span><math><mi>A</mi></math></span>-moment map is proper, then the convexity theorem holds for such a Hamiltonian <span><math><mi>T</mi></math></span>-space, even when it is singular. We also prove that if, furthermore, the <span><math><mi>T</mi></math></span>-space has dimension <span><math><mn>2</mn><mstyle><mi>dim</mi></mstyle><mspace></mspace><mi>T</mi></math></span> and <span><math><mi>T</mi></math></span> acts effectively, then the moment polytope is sufficient to essentially distinguish their homeomorphism type, though not their diffeomorphism types. This generalizes a theorem of Delzant in the smooth case. This paper is a concise version of a companion paper [B. Lian. B. Song, A convexity theorem and reduced Delzant spaces, <span>math.DG/0509429</span><svg><path></path></svg>].</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 6","pages":"Pages 554-576"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.007","citationCount":"0","resultStr":"{\"title\":\"Reduced Delzant spaces and a convexity theorem\",\"authors\":\"Bong H. Lian ,&nbsp;Bailin Song\",\"doi\":\"10.1016/j.top.2007.02.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The convexity theorem of Atiyah and Guillemin–Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of the image of the fixed point set. Sjamaar–Lerman proved that the Marsden–Weinstein reduction of a connected Hamitonian <span><math><mi>G</mi></math></span>-manifold is a stratified symplectic space. Suppose <span><math><mn>1</mn><mo>→</mo><mi>A</mi><mo>→</mo><mi>G</mi><mo>→</mo><mi>T</mi><mo>→</mo><mn>1</mn></math></span> is an exact sequence of compact Lie groups and <span><math><mi>T</mi></math></span> is a torus. Then the reduction of a Hamiltonian <span><math><mi>G</mi></math></span>-manifold with respect to <span><math><mi>A</mi></math></span> yields a Hamiltonian <span><math><mi>T</mi></math></span>-space. We show that if the <span><math><mi>A</mi></math></span>-moment map is proper, then the convexity theorem holds for such a Hamiltonian <span><math><mi>T</mi></math></span>-space, even when it is singular. We also prove that if, furthermore, the <span><math><mi>T</mi></math></span>-space has dimension <span><math><mn>2</mn><mstyle><mi>dim</mi></mstyle><mspace></mspace><mi>T</mi></math></span> and <span><math><mi>T</mi></math></span> acts effectively, then the moment polytope is sufficient to essentially distinguish their homeomorphism type, though not their diffeomorphism types. This generalizes a theorem of Delzant in the smooth case. This paper is a concise version of a companion paper [B. Lian. B. Song, A convexity theorem and reduced Delzant spaces, <span>math.DG/0509429</span><svg><path></path></svg>].</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 6\",\"pages\":\"Pages 554-576\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.02.007\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Atiyah和Guillemin-Sternberg的凸性定理指出,任何具有哈密顿环面的连通紧流形都有一个矩映射,其像是不动点集像的凸包。Sjamaar-Lerman证明了连通Hamitonian g流形的Marsden-Weinstein约简是一个分层辛空间。设1→A→G→T→1是紧李群的精确序列,T是环面。然后对a的哈密顿g流形进行约简,得到哈密顿t空间。我们证明了如果a -矩映射是适当的,那么凸性定理对于这样的哈密顿t空间是成立的,即使它是奇异的。进一步证明,如果T空间具有2dimT维数,且T有效作用,则矩多面体足以从本质上区分它们的同胚类型,但不能区分它们的微分同胚类型。这推广了光滑情况下Delzant的一个定理。这篇论文是一篇同伴论文的简明版本[B]。丽安。宋建军。一种凸性定理与简化Delzant空间的关系,数学学报,[j]. (04)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reduced Delzant spaces and a convexity theorem

The convexity theorem of Atiyah and Guillemin–Sternberg says that any connected compact manifold with Hamiltonian torus action has a moment map whose image is the convex hull of the image of the fixed point set. Sjamaar–Lerman proved that the Marsden–Weinstein reduction of a connected Hamitonian G-manifold is a stratified symplectic space. Suppose 1AGT1 is an exact sequence of compact Lie groups and T is a torus. Then the reduction of a Hamiltonian G-manifold with respect to A yields a Hamiltonian T-space. We show that if the A-moment map is proper, then the convexity theorem holds for such a Hamiltonian T-space, even when it is singular. We also prove that if, furthermore, the T-space has dimension 2dimT and T acts effectively, then the moment polytope is sufficient to essentially distinguish their homeomorphism type, though not their diffeomorphism types. This generalizes a theorem of Delzant in the smooth case. This paper is a concise version of a companion paper [B. Lian. B. Song, A convexity theorem and reduced Delzant spaces, math.DG/0509429].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信