有限表示的群和非常快速增长的函数的贝蒂数

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2007.02.002
Alexander Nabutovsky , Shmuel Weinberger
{"title":"有限表示的群和非常快速增长的函数的贝蒂数","authors":"Alexander Nabutovsky ,&nbsp;Shmuel Weinberger","doi":"10.1016/j.top.2007.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Define the length of a finite presentation of a group <span><math><mi>G</mi></math></span> as the sum of lengths of all relators plus the number of generators. How large can the <span><math><mi>k</mi></math></span>th Betti number <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo></math></span> rank <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> be providing that <span><math><mi>G</mi></math></span> has length <span><math><mo>≤</mo><mi>N</mi></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is finite? We prove that for every <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> the maximum <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span> of the <span><math><mi>k</mi></math></span>th Betti numbers of all such groups is an extremely rapidly growing function of <span><math><mi>N</mi></math></span>. It grows faster that all functions previously encountered in mathematics (outside of logic) including non-computable functions (at least those that are known to us). More formally, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> grows as the third busy beaver function that measures the maximal productivity of Turing machines with <span><math><mo>≤</mo><mi>N</mi></math></span> states that use the oracle for the halting problem of Turing machines using the oracle for the halting problem of usual Turing machines.</p><p>We also describe the fastest possible growth of a sequence of finite Betti numbers of a finitely presented group. In particular, it cannot grow as fast as the third busy beaver function but can grow faster than the second busy beaver function that measures the maximal productivity of Turing machines using an oracle for the halting problem for usual Turing machines. We describe a natural problem about Betti numbers of finitely presented groups such that its answer is expressed by a function that grows as the fifth busy beaver function.</p><p>Also, we outline a construction of a finitely presented group all of whose homology groups are either <span><math><mstyle><mi>Z</mi></mstyle></math></span> or trivial such that its Betti numbers form a random binary sequence.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 211-223"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.002","citationCount":"5","resultStr":"{\"title\":\"Betti numbers of finitely presented groups and very rapidly growing functions\",\"authors\":\"Alexander Nabutovsky ,&nbsp;Shmuel Weinberger\",\"doi\":\"10.1016/j.top.2007.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Define the length of a finite presentation of a group <span><math><mi>G</mi></math></span> as the sum of lengths of all relators plus the number of generators. How large can the <span><math><mi>k</mi></math></span>th Betti number <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo></math></span> rank <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> be providing that <span><math><mi>G</mi></math></span> has length <span><math><mo>≤</mo><mi>N</mi></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></math></span> is finite? We prove that for every <span><math><mi>k</mi><mo>≥</mo><mn>3</mn></math></span> the maximum <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub><mrow><mo>(</mo><mi>N</mi><mo>)</mo></mrow></math></span> of the <span><math><mi>k</mi></math></span>th Betti numbers of all such groups is an extremely rapidly growing function of <span><math><mi>N</mi></math></span>. It grows faster that all functions previously encountered in mathematics (outside of logic) including non-computable functions (at least those that are known to us). More formally, <span><math><msub><mrow><mi>b</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> grows as the third busy beaver function that measures the maximal productivity of Turing machines with <span><math><mo>≤</mo><mi>N</mi></math></span> states that use the oracle for the halting problem of Turing machines using the oracle for the halting problem of usual Turing machines.</p><p>We also describe the fastest possible growth of a sequence of finite Betti numbers of a finitely presented group. In particular, it cannot grow as fast as the third busy beaver function but can grow faster than the second busy beaver function that measures the maximal productivity of Turing machines using an oracle for the halting problem for usual Turing machines. We describe a natural problem about Betti numbers of finitely presented groups such that its answer is expressed by a function that grows as the fifth busy beaver function.</p><p>Also, we outline a construction of a finitely presented group all of whose homology groups are either <span><math><mstyle><mi>Z</mi></mstyle></math></span> or trivial such that its Betti numbers form a random binary sequence.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 2\",\"pages\":\"Pages 211-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.02.002\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

定义群G的有限表示的长度为所有关联子的长度加上生成子的数量。假设G的长度≤N且bk(G)是有限的,那么第k个Betti数bk(G)= rank Hk(G)有多大?我们证明了对于每k≥3,所有这些群的第k个贝蒂数的最大值bk(N)是N的一个极快速增长的函数,它的增长速度比以前在数学(逻辑以外)中遇到的所有函数都快,包括不可计算的函数(至少是我们已知的那些函数)。更正式地说,bk增长为第三个忙碌海狸函数,它测量≤N个状态的图灵机的最大生产率,这些状态使用oracle来解决图灵机的停机问题,使用oracle来解决普通图灵机的停机问题。我们还描述了有限呈现群的有限Betti数序列的最快可能增长。特别是,它不能像第三个忙狸函数那样增长得快,但可以比第二个忙狸函数增长得快,第二个忙狸函数使用oracle来测量图灵机的最大生产率,以解决普通图灵机的停机问题。我们描述了一个关于有限呈现群的贝蒂数的自然问题,这样它的答案就可以用一个增长为第五忙碌海狸函数的函数来表示。此外,我们还构造了一个有限呈现群,其所有同调群要么是Z,要么是平凡,使得它的Betti数形成一个随机二进制序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Betti numbers of finitely presented groups and very rapidly growing functions

Define the length of a finite presentation of a group G as the sum of lengths of all relators plus the number of generators. How large can the kth Betti number bk(G)= rank Hk(G) be providing that G has length N and bk(G) is finite? We prove that for every k3 the maximum bk(N) of the kth Betti numbers of all such groups is an extremely rapidly growing function of N. It grows faster that all functions previously encountered in mathematics (outside of logic) including non-computable functions (at least those that are known to us). More formally, bk grows as the third busy beaver function that measures the maximal productivity of Turing machines with N states that use the oracle for the halting problem of Turing machines using the oracle for the halting problem of usual Turing machines.

We also describe the fastest possible growth of a sequence of finite Betti numbers of a finitely presented group. In particular, it cannot grow as fast as the third busy beaver function but can grow faster than the second busy beaver function that measures the maximal productivity of Turing machines using an oracle for the halting problem for usual Turing machines. We describe a natural problem about Betti numbers of finitely presented groups such that its answer is expressed by a function that grows as the fifth busy beaver function.

Also, we outline a construction of a finitely presented group all of whose homology groups are either Z or trivial such that its Betti numbers form a random binary sequence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信