狄拉克-双狄拉克法的下降原理

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2007.02.001
Heath Emerson , Ralf Meyer
{"title":"狄拉克-双狄拉克法的下降原理","authors":"Heath Emerson ,&nbsp;Ralf Meyer","doi":"10.1016/j.top.2007.02.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mi>G</mi></math></span> be a torsion-free discrete group with a finite-dimensional classifying space <span><math><mi>B</mi><mi>G</mi></math></span>. We show that <span><math><mi>G</mi></math></span> has a dual-Dirac morphism if and only if a certain coarse (co-)assembly map is an isomorphism. Hence the existence of a dual-Dirac morphism for such groups is a metric, that is, coarse, invariant. We get results for groups with torsion as well.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 185-209"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.02.001","citationCount":"42","resultStr":"{\"title\":\"A descent principle for the Dirac–dual-Dirac method\",\"authors\":\"Heath Emerson ,&nbsp;Ralf Meyer\",\"doi\":\"10.1016/j.top.2007.02.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><mi>G</mi></math></span> be a torsion-free discrete group with a finite-dimensional classifying space <span><math><mi>B</mi><mi>G</mi></math></span>. We show that <span><math><mi>G</mi></math></span> has a dual-Dirac morphism if and only if a certain coarse (co-)assembly map is an isomorphism. Hence the existence of a dual-Dirac morphism for such groups is a metric, that is, coarse, invariant. We get results for groups with torsion as well.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 2\",\"pages\":\"Pages 185-209\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.02.001\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

设G为具有有限维分类空间BG的无扭离散群。我们证明了G具有双dirac态射当且仅当某个粗糙(共)组合映射是同构的。因此这种群的双狄拉克态射的存在性是一个度量,即粗糙的不变量。我们也得到了有扭转的群的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A descent principle for the Dirac–dual-Dirac method

Let G be a torsion-free discrete group with a finite-dimensional classifying space BG. We show that G has a dual-Dirac morphism if and only if a certain coarse (co-)assembly map is an isomorphism. Hence the existence of a dual-Dirac morphism for such groups is a metric, that is, coarse, invariant. We get results for groups with torsion as well.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信