非球面poincarcarcars复合物的切向端纤维化

Topology Pub Date : 2007-09-01 DOI:10.1016/j.top.2007.01.004
Yanghyun Byun
{"title":"非球面poincarcarcars复合物的切向端纤维化","authors":"Yanghyun Byun","doi":"10.1016/j.top.2007.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a sphere fibration over a finite aspherical Poincaré complex <span><math><mi>X</mi></math></span>, which we call the tangential end fibration, under the condition that the universal cover of <span><math><mi>X</mi></math></span> is forward tame and simply connected at infinity. We show that it is tangent to <span><math><mi>X</mi></math></span> if the formal dimension of <span><math><mi>X</mi></math></span> is even or, when the formal dimension is odd, if the diagonal <span><math><mi>X</mi><mo>→</mo><mi>X</mi><mo>×</mo><mi>X</mi></math></span> admits a Poincaré embedding structure.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 5","pages":"Pages 507-525"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.01.004","citationCount":"1","resultStr":"{\"title\":\"The tangential end fibration of an aspherical Poincaré complex\",\"authors\":\"Yanghyun Byun\",\"doi\":\"10.1016/j.top.2007.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a sphere fibration over a finite aspherical Poincaré complex <span><math><mi>X</mi></math></span>, which we call the tangential end fibration, under the condition that the universal cover of <span><math><mi>X</mi></math></span> is forward tame and simply connected at infinity. We show that it is tangent to <span><math><mi>X</mi></math></span> if the formal dimension of <span><math><mi>X</mi></math></span> is even or, when the formal dimension is odd, if the diagonal <span><math><mi>X</mi><mo>→</mo><mi>X</mi><mo>×</mo><mi>X</mi></math></span> admits a Poincaré embedding structure.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 5\",\"pages\":\"Pages 507-525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.01.004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们在有限非球面庞加莱复X上构造了一个球纤振,我们称之为切端纤振,其条件是X的泛盖正向平坦且在无穷远处单连通。我们证明了当X的形式维数为偶数时它与X相切,或者当形式维数为奇数时,如果对角线X→X×X允许庞卡罗嵌入结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The tangential end fibration of an aspherical Poincaré complex

We construct a sphere fibration over a finite aspherical Poincaré complex X, which we call the tangential end fibration, under the condition that the universal cover of X is forward tame and simply connected at infinity. We show that it is tangent to X if the formal dimension of X is even or, when the formal dimension is odd, if the diagonal XX×X admits a Poincaré embedding structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信