{"title":"非球面poincarcarcars复合物的切向端纤维化","authors":"Yanghyun Byun","doi":"10.1016/j.top.2007.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a sphere fibration over a finite aspherical Poincaré complex <span><math><mi>X</mi></math></span>, which we call the tangential end fibration, under the condition that the universal cover of <span><math><mi>X</mi></math></span> is forward tame and simply connected at infinity. We show that it is tangent to <span><math><mi>X</mi></math></span> if the formal dimension of <span><math><mi>X</mi></math></span> is even or, when the formal dimension is odd, if the diagonal <span><math><mi>X</mi><mo>→</mo><mi>X</mi><mo>×</mo><mi>X</mi></math></span> admits a Poincaré embedding structure.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 5","pages":"Pages 507-525"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.01.004","citationCount":"1","resultStr":"{\"title\":\"The tangential end fibration of an aspherical Poincaré complex\",\"authors\":\"Yanghyun Byun\",\"doi\":\"10.1016/j.top.2007.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a sphere fibration over a finite aspherical Poincaré complex <span><math><mi>X</mi></math></span>, which we call the tangential end fibration, under the condition that the universal cover of <span><math><mi>X</mi></math></span> is forward tame and simply connected at infinity. We show that it is tangent to <span><math><mi>X</mi></math></span> if the formal dimension of <span><math><mi>X</mi></math></span> is even or, when the formal dimension is odd, if the diagonal <span><math><mi>X</mi><mo>→</mo><mi>X</mi><mo>×</mo><mi>X</mi></math></span> admits a Poincaré embedding structure.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 5\",\"pages\":\"Pages 507-525\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.01.004\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The tangential end fibration of an aspherical Poincaré complex
We construct a sphere fibration over a finite aspherical Poincaré complex , which we call the tangential end fibration, under the condition that the universal cover of is forward tame and simply connected at infinity. We show that it is tangent to if the formal dimension of is even or, when the formal dimension is odd, if the diagonal admits a Poincaré embedding structure.