Francis Clarke , Martin Crossley , Sarah Whitehouse
{"title":"k理论运算环的离散模范畴","authors":"Francis Clarke , Martin Crossley , Sarah Whitehouse","doi":"10.1016/j.top.2007.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>We study the category of discrete modules over the ring of degree-zero stable operations in <span><math><mi>p</mi></math></span>-local complex <span><math><mi>K</mi></math></span>-theory, where <span><math><mi>p</mi></math></span> is an odd prime. We show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>-homology of any space or spectrum is such a module, and that this category is isomorphic to a category defined by Bousfield and used in his work on the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>-local stable homotopy category. We give a simple construction of cofree discrete modules and construct the analogue in the category of discrete modules of a four-term exact sequence due to Bousfield.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 139-154"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2007.01.001","citationCount":"8","resultStr":"{\"title\":\"The discrete module category for the ring of K-theory operations\",\"authors\":\"Francis Clarke , Martin Crossley , Sarah Whitehouse\",\"doi\":\"10.1016/j.top.2007.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the category of discrete modules over the ring of degree-zero stable operations in <span><math><mi>p</mi></math></span>-local complex <span><math><mi>K</mi></math></span>-theory, where <span><math><mi>p</mi></math></span> is an odd prime. We show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>-homology of any space or spectrum is such a module, and that this category is isomorphic to a category defined by Bousfield and used in his work on the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mrow><mo>(</mo><mi>p</mi><mo>)</mo></mrow></mrow></msub></math></span>-local stable homotopy category. We give a simple construction of cofree discrete modules and construct the analogue in the category of discrete modules of a four-term exact sequence due to Bousfield.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 2\",\"pages\":\"Pages 139-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2007.01.001\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The discrete module category for the ring of K-theory operations
We study the category of discrete modules over the ring of degree-zero stable operations in -local complex -theory, where is an odd prime. We show that the -homology of any space or spectrum is such a module, and that this category is isomorphic to a category defined by Bousfield and used in his work on the -local stable homotopy category. We give a simple construction of cofree discrete modules and construct the analogue in the category of discrete modules of a four-term exact sequence due to Bousfield.