局部稳定映射S3→R4空间路径分量的几何分类

Topology Pub Date : 2007-11-01 DOI:10.1016/j.top.2006.12.004
Ole Andersson
{"title":"局部稳定映射S3→R4空间路径分量的几何分类","authors":"Ole Andersson","doi":"10.1016/j.top.2006.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Locally stable maps <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> are classified up to homotopy through locally stable maps. The equivalence class of a map <span><math><mi>f</mi></math></span> is determined by three invariants: the isotopy class <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of its framed singularity link, the generalized normal degree <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, and the algebraic number of cusps <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of any extension of <span><math><mi>f</mi></math></span> to a locally stable map of the 4-disk into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. Relations between the invariants are described, and it is proved that for any <span><math><mi>σ</mi></math></span>, <span><math><mi>ν</mi></math></span>, and <span><math><mi>κ</mi></math></span> which satisfy these relations, there exists a map <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>σ</mi></math></span>, <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>ν</mi></math></span>, and <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>κ</mi></math></span>. It follows in particular that every framed link in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is the singularity set of some locally stable map into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 6","pages":"Pages 577-597"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.12.004","citationCount":"2","resultStr":"{\"title\":\"A geometric classification of the path components of the space of locally stable maps S3→R4\",\"authors\":\"Ole Andersson\",\"doi\":\"10.1016/j.top.2006.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Locally stable maps <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> are classified up to homotopy through locally stable maps. The equivalence class of a map <span><math><mi>f</mi></math></span> is determined by three invariants: the isotopy class <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of its framed singularity link, the generalized normal degree <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, and the algebraic number of cusps <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of any extension of <span><math><mi>f</mi></math></span> to a locally stable map of the 4-disk into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. Relations between the invariants are described, and it is proved that for any <span><math><mi>σ</mi></math></span>, <span><math><mi>ν</mi></math></span>, and <span><math><mi>κ</mi></math></span> which satisfy these relations, there exists a map <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>σ</mi></math></span>, <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>ν</mi></math></span>, and <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>κ</mi></math></span>. It follows in particular that every framed link in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is the singularity set of some locally stable map into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 6\",\"pages\":\"Pages 577-597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.12.004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

局部稳定映射S3→R4通过局部稳定映射被分类到同伦。映射f的等价类由三个不变量决定:它的框架奇点连杆的同位素类σ(f),广义正规度ν(f),以及f的任意扩展到R5的局部稳定映射的顶点代数数κ(f)。描述了不变量之间的关系,并证明了对于任意满足这些关系的σ, ν, κ,存在一个映射f:S3→R4,其中σ(f)=σ, ν(f)=ν, κ(f)=κ。特别地,S3中的每个框架链接都是某个到R4的局部稳定映射的奇异集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A geometric classification of the path components of the space of locally stable maps S3→R4

Locally stable maps S3R4 are classified up to homotopy through locally stable maps. The equivalence class of a map f is determined by three invariants: the isotopy class σ(f) of its framed singularity link, the generalized normal degree ν(f), and the algebraic number of cusps κ(f) of any extension of f to a locally stable map of the 4-disk into R5. Relations between the invariants are described, and it is proved that for any σ, ν, and κ which satisfy these relations, there exists a map f:S3R4 with σ(f)=σ, ν(f)=ν, and κ(f)=κ. It follows in particular that every framed link in S3 is the singularity set of some locally stable map into R4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信