{"title":"局部稳定映射S3→R4空间路径分量的几何分类","authors":"Ole Andersson","doi":"10.1016/j.top.2006.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>Locally stable maps <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> are classified up to homotopy through locally stable maps. The equivalence class of a map <span><math><mi>f</mi></math></span> is determined by three invariants: the isotopy class <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of its framed singularity link, the generalized normal degree <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, and the algebraic number of cusps <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of any extension of <span><math><mi>f</mi></math></span> to a locally stable map of the 4-disk into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. Relations between the invariants are described, and it is proved that for any <span><math><mi>σ</mi></math></span>, <span><math><mi>ν</mi></math></span>, and <span><math><mi>κ</mi></math></span> which satisfy these relations, there exists a map <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>σ</mi></math></span>, <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>ν</mi></math></span>, and <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>κ</mi></math></span>. It follows in particular that every framed link in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is the singularity set of some locally stable map into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 6","pages":"Pages 577-597"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.12.004","citationCount":"2","resultStr":"{\"title\":\"A geometric classification of the path components of the space of locally stable maps S3→R4\",\"authors\":\"Ole Andersson\",\"doi\":\"10.1016/j.top.2006.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Locally stable maps <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> are classified up to homotopy through locally stable maps. The equivalence class of a map <span><math><mi>f</mi></math></span> is determined by three invariants: the isotopy class <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of its framed singularity link, the generalized normal degree <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span>, and the algebraic number of cusps <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow></math></span> of any extension of <span><math><mi>f</mi></math></span> to a locally stable map of the 4-disk into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>5</mn></mrow></msup></math></span>. Relations between the invariants are described, and it is proved that for any <span><math><mi>σ</mi></math></span>, <span><math><mi>ν</mi></math></span>, and <span><math><mi>κ</mi></math></span> which satisfy these relations, there exists a map <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span> with <span><math><mi>σ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>σ</mi></math></span>, <span><math><mi>ν</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>ν</mi></math></span>, and <span><math><mi>κ</mi><mrow><mo>(</mo><mi>f</mi><mo>)</mo></mrow><mo>=</mo><mi>κ</mi></math></span>. It follows in particular that every framed link in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span> is the singularity set of some locally stable map into <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>4</mn></mrow></msup></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 6\",\"pages\":\"Pages 577-597\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.12.004\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A geometric classification of the path components of the space of locally stable maps S3→R4
Locally stable maps are classified up to homotopy through locally stable maps. The equivalence class of a map is determined by three invariants: the isotopy class of its framed singularity link, the generalized normal degree , and the algebraic number of cusps of any extension of to a locally stable map of the 4-disk into . Relations between the invariants are described, and it is proved that for any , , and which satisfy these relations, there exists a map with , , and . It follows in particular that every framed link in is the singularity set of some locally stable map into .