德格鲁特绝对锥猜想的解

Topology Pub Date : 2007-03-01 DOI:10.1016/j.top.2006.12.001
Craig R. Guilbault
{"title":"德格鲁特绝对锥猜想的解","authors":"Craig R. Guilbault","doi":"10.1016/j.top.2006.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>A compactum <span><math><mi>X</mi></math></span> is an ‘absolute cone’ if, for each of its points <span><math><mi>x</mi></math></span>, the space <span><math><mi>X</mi></math></span> is homeomorphic to a cone with <span><math><mi>x</mi></math></span> corresponding to the cone point. In 1971, J. de Groot conjectured that each <span><math><mi>n</mi></math></span>-dimensional absolute cone is an <span><math><mi>n</mi></math></span>-cell. In this paper, we give a complete solution to that conjecture. In particular, we show that the conjecture is true for <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span> and false for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, the absolute cone conjecture is true if and only if the 3-dimensional Poincaré Conjecture is true.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 2","pages":"Pages 89-102"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.12.001","citationCount":"7","resultStr":"{\"title\":\"A solution to de Groot’s absolute cone conjecture\",\"authors\":\"Craig R. Guilbault\",\"doi\":\"10.1016/j.top.2006.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A compactum <span><math><mi>X</mi></math></span> is an ‘absolute cone’ if, for each of its points <span><math><mi>x</mi></math></span>, the space <span><math><mi>X</mi></math></span> is homeomorphic to a cone with <span><math><mi>x</mi></math></span> corresponding to the cone point. In 1971, J. de Groot conjectured that each <span><math><mi>n</mi></math></span>-dimensional absolute cone is an <span><math><mi>n</mi></math></span>-cell. In this paper, we give a complete solution to that conjecture. In particular, we show that the conjecture is true for <span><math><mi>n</mi><mo>≤</mo><mn>3</mn></math></span> and false for <span><math><mi>n</mi><mo>≥</mo><mn>5</mn></math></span>. For <span><math><mi>n</mi><mo>=</mo><mn>4</mn></math></span>, the absolute cone conjecture is true if and only if the 3-dimensional Poincaré Conjecture is true.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 2\",\"pages\":\"Pages 89-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.12.001\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

一个紧致X是一个“绝对锥”,如果对于它的每一个点X,空间X同胚于一个锥,其中X对应于锥点。1971年,J. de Groot推测每个n维绝对锥都是一个n细胞。本文给出了该猜想的完全解。特别地,我们证明了当n≤3时该猜想为真,当n≥5时该猜想为假。对于n=4,当且仅当三维庞加莱猜想为真,绝对锥猜想为真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A solution to de Groot’s absolute cone conjecture

A compactum X is an ‘absolute cone’ if, for each of its points x, the space X is homeomorphic to a cone with x corresponding to the cone point. In 1971, J. de Groot conjectured that each n-dimensional absolute cone is an n-cell. In this paper, we give a complete solution to that conjecture. In particular, we show that the conjecture is true for n3 and false for n5. For n=4, the absolute cone conjecture is true if and only if the 3-dimensional Poincaré Conjecture is true.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信