{"title":"封闭黎曼流形上最短测地线网的长度","authors":"Regina Rotman","doi":"10.1016/j.top.2006.10.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we will estimate the smallest length of a minimal geodesic net on an arbitrary closed Riemannian manifold <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in terms of the diameter of this manifold and its dimension. Minimal geodesic nets are critical points of the length functional on the space of immersed graphs into a Riemannian manifold. We prove that there exists a minimal geodesic net that consists of <span><math><mi>m</mi></math></span> geodesics connecting two points <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of total length <span><math><mo>≤</mo><mi>m</mi><mi>d</mi></math></span>, where <span><math><mi>m</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mi>d</mi></math></span> is the diameter of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We also show that there exists a minimal geodesic net with at most <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> vertices and <span><math><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> geodesic segments of total length <span><math><mo>≤</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mstyle><mi>FillRad</mi></mstyle><mspace></mspace><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≤</mo><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><msqrt><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mi>!</mi></mrow></msqrt><mstyle><mi>vol</mi></mstyle><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></math></span>.</p><p>These results significantly improve one of the results of [A. Nabutovsky, R. Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 234–254] as well as most of the results of [A. Nabutovsky, R. Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (4) (2004) 748–790].</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 4","pages":"Pages 343-356"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.10.003","citationCount":"11","resultStr":"{\"title\":\"The length of a shortest geodesic net on a closed Riemannian manifold\",\"authors\":\"Regina Rotman\",\"doi\":\"10.1016/j.top.2006.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we will estimate the smallest length of a minimal geodesic net on an arbitrary closed Riemannian manifold <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> in terms of the diameter of this manifold and its dimension. Minimal geodesic nets are critical points of the length functional on the space of immersed graphs into a Riemannian manifold. We prove that there exists a minimal geodesic net that consists of <span><math><mi>m</mi></math></span> geodesics connecting two points <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>∈</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> of total length <span><math><mo>≤</mo><mi>m</mi><mi>d</mi></math></span>, where <span><math><mi>m</mi><mo>∈</mo><mrow><mo>{</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mo>}</mo></mrow></math></span> and <span><math><mi>d</mi></math></span> is the diameter of <span><math><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>. We also show that there exists a minimal geodesic net with at most <span><math><mi>n</mi><mo>+</mo><mn>1</mn></math></span> vertices and <span><math><mfrac><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> geodesic segments of total length <span><math><mo>≤</mo><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><mstyle><mi>FillRad</mi></mstyle><mspace></mspace><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>≤</mo><msup><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><msup><mrow><mi>n</mi></mrow><mrow><mi>n</mi></mrow></msup><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>2</mn><mo>)</mo></mrow><msqrt><mrow><mrow><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow><mi>!</mi></mrow></msqrt><mstyle><mi>vol</mi></mstyle><msup><mrow><mrow><mo>(</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></mrow></mrow><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></msup></math></span>.</p><p>These results significantly improve one of the results of [A. Nabutovsky, R. Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 234–254] as well as most of the results of [A. Nabutovsky, R. Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (4) (2004) 748–790].</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 4\",\"pages\":\"Pages 343-356\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.10.003\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
摘要
本文将根据任意闭黎曼流形Mn的直径及其维数来估计该流形上最小测地线网的最小长度。最小测地线网是浸没图在黎曼流形空间上的长度泛函的临界点。我们证明了存在一个极小测地线网,由m条测地线组成,该网连接两点p,q∈Mn,且总长度≤md,其中m∈{2,…,(n+1)}, d为Mn的直径。我们还证明了存在一个最小测地线网,该网最多有n+1个顶点,且(n+1)(n+2)2个测地线段的总长度≤(n+1)(n+2)FillRadMn≤(n+1)2nn(n+2)(n+1)!vol(Mn)1n。这些结果显著改善了[A.]纳布托夫斯基,R.罗特曼,黎曼流形上具有非平凡第二同调群的封闭测地网的最小长度,Geom。[A] .文献综述[A] .文献综述]。Nabutovsky, R. Rotman,固定1周期的体积、直径和最小质量,地球。功能。书刊。14(4)(2004)748-790]。
The length of a shortest geodesic net on a closed Riemannian manifold
In this paper we will estimate the smallest length of a minimal geodesic net on an arbitrary closed Riemannian manifold in terms of the diameter of this manifold and its dimension. Minimal geodesic nets are critical points of the length functional on the space of immersed graphs into a Riemannian manifold. We prove that there exists a minimal geodesic net that consists of geodesics connecting two points of total length , where and is the diameter of . We also show that there exists a minimal geodesic net with at most vertices and geodesic segments of total length .
These results significantly improve one of the results of [A. Nabutovsky, R. Rotman, The minimal length of a closed geodesic net on a Riemannian manifold with a nontrivial second homology group, Geom. Dedicata 113 (2005) 234–254] as well as most of the results of [A. Nabutovsky, R. Rotman, Volume, diameter and the minimal mass of a stationary 1-cycle, Geom. Funct. Anal. 14 (4) (2004) 748–790].