关于无刺仙人掌,Deligne猜想和Connes-Kreimer的Hopf代数

Topology Pub Date : 2007-01-01 DOI:10.1016/j.top.2006.10.002
Ralph M. Kaufmann
{"title":"关于无刺仙人掌,Deligne猜想和Connes-Kreimer的Hopf代数","authors":"Ralph M. Kaufmann","doi":"10.1016/j.top.2006.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>Using a cell model for the little discs operad in terms of spineless cacti we give a minimal common topological operadic formalism for three a priori disparate algebraic structures: (1) a solution to Deligne’s conjecture on the Hochschild complex, (2) the Hopf algebra of Connes and Kreimer, and (3) the string topology of Chas and Sullivan.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 1","pages":"Pages 39-88"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.10.002","citationCount":"61","resultStr":"{\"title\":\"On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra\",\"authors\":\"Ralph M. Kaufmann\",\"doi\":\"10.1016/j.top.2006.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Using a cell model for the little discs operad in terms of spineless cacti we give a minimal common topological operadic formalism for three a priori disparate algebraic structures: (1) a solution to Deligne’s conjecture on the Hochschild complex, (2) the Hopf algebra of Connes and Kreimer, and (3) the string topology of Chas and Sullivan.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 1\",\"pages\":\"Pages 39-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.10.002\",\"citationCount\":\"61\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

摘要

利用无刺仙人掌的小圆盘操作的细胞模型,我们给出了三个先验的不同代数结构的最小公共拓扑操作形式:(1)Deligne猜想在Hochschild复合体上的解,(2)Connes和Kreimer的Hopf代数,(3)Chas和Sullivan的弦拓扑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spineless cacti, Deligne’s conjecture and Connes–Kreimer’s Hopf algebra

Using a cell model for the little discs operad in terms of spineless cacti we give a minimal common topological operadic formalism for three a priori disparate algebraic structures: (1) a solution to Deligne’s conjecture on the Hochschild complex, (2) the Hopf algebra of Connes and Kreimer, and (3) the string topology of Chas and Sullivan.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信