结点上的拉斯穆森不变量和更尖锐的切-本尼昆不等式

Topology Pub Date : 2007-01-01 DOI:10.1016/j.top.2006.10.001
Tomomi Kawamura
{"title":"结点上的拉斯穆森不变量和更尖锐的切-本尼昆不等式","authors":"Tomomi Kawamura","doi":"10.1016/j.top.2006.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Rasmussen introduced a knot invariant based on Khovanov homology theory, and showed that this invariant estimates the four-genus of knots. We compare his result with the sharper slice-Bennequin inequality for knots. Then we obtain a similar estimate of the Rasmussen invariant for this inequality.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"46 1","pages":"Pages 29-38"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.10.001","citationCount":"20","resultStr":"{\"title\":\"The Rasmussen invariants and the sharper slice-Bennequin inequality on knots\",\"authors\":\"Tomomi Kawamura\",\"doi\":\"10.1016/j.top.2006.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Rasmussen introduced a knot invariant based on Khovanov homology theory, and showed that this invariant estimates the four-genus of knots. We compare his result with the sharper slice-Bennequin inequality for knots. Then we obtain a similar estimate of the Rasmussen invariant for this inequality.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"46 1\",\"pages\":\"Pages 29-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.10.001\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000553\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

Rasmussen在Khovanov同调理论的基础上引入了一个结点不变量,并证明了该不变量估计了结点的四属。我们将他的结果与关于结的更尖锐的切片-班尼昆不等式进行比较。然后我们得到了这个不等式的类似的拉斯穆森不变量的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Rasmussen invariants and the sharper slice-Bennequin inequality on knots

Rasmussen introduced a knot invariant based on Khovanov homology theory, and showed that this invariant estimates the four-genus of knots. We compare his result with the sharper slice-Bennequin inequality for knots. Then we obtain a similar estimate of the Rasmussen invariant for this inequality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信