{"title":"可构造束的等变形式积分及高斯-博内定理","authors":"Matvei Libine","doi":"10.1016/j.top.2006.07.001","DOIUrl":null,"url":null,"abstract":"<div><p>The Berline–Vergne integral localization formula for equivariantly closed forms ([N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539–541], Theorem 7.11 in [N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992]) is well-known and requires the acting Lie group to be compact. In this article, we extend this result to real reductive Lie groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</p><p>As an application of this generalization, we prove an analogue of the Gauss–Bonnet theorem for constructible sheaves. If <span><math><mi>F</mi></math></span> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>-equivariant sheaf on a complex projective manifold <span><math><mi>M</mi></math></span>, then the Euler characteristic of <span><math><mi>M</mi></math></span> with respect to <span><math><mi>F</mi></math></span><span><span><span><math><mi>χ</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo></mrow></mrow><mrow><munder><mrow><mo>dim</mo></mrow><mrow><mi>C</mi></mrow></munder><mi>M</mi></mrow></msup></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></msub><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span></span></span> as distributions on <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, where <span><math><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></math></span> is the characteristic cycle of <span><math><mi>F</mi></math></span> and <span><math><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the Euler form of <span><math><mi>M</mi></math></span> extended to the cotangent space <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>M</mi></math></span> (independently of <span><math><mi>F</mi></math></span>). We also consider an analogue of Duistermaat–Heckman measures for real reductive Lie groups acting on symplectic manifolds.</p><p>In [M. Libine, Riemann–Roch–Hirzebruch integral formula for characters of reductive Lie groups, Represent. Theory 9 (2005) 507–524. Also <span>math.RT/0312454</span><svg><path></path></svg>] I apply the results of this article to obtain a Riemann–Roch–Hirzebruch type integral formula for characters of representations of reductive groups.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"47 1","pages":"Pages 1-39"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.07.001","citationCount":"5","resultStr":"{\"title\":\"Integrals of equivariant forms and a Gauss–Bonnet theorem for constructible sheaves\",\"authors\":\"Matvei Libine\",\"doi\":\"10.1016/j.top.2006.07.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Berline–Vergne integral localization formula for equivariantly closed forms ([N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539–541], Theorem 7.11 in [N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992]) is well-known and requires the acting Lie group to be compact. In this article, we extend this result to real reductive Lie groups <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>.</p><p>As an application of this generalization, we prove an analogue of the Gauss–Bonnet theorem for constructible sheaves. If <span><math><mi>F</mi></math></span> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>-equivariant sheaf on a complex projective manifold <span><math><mi>M</mi></math></span>, then the Euler characteristic of <span><math><mi>M</mi></math></span> with respect to <span><math><mi>F</mi></math></span><span><span><span><math><mi>χ</mi><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>F</mi><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mrow><mo>(</mo><mn>2</mn><mi>π</mi><mo>)</mo></mrow></mrow><mrow><munder><mrow><mo>dim</mo></mrow><mrow><mi>C</mi></mrow></munder><mi>M</mi></mrow></msup></mrow></mfrac><msub><mrow><mo>∫</mo></mrow><mrow><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></mrow></msub><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span></span></span> as distributions on <span><math><msub><mrow><mi>g</mi></mrow><mrow><mi>R</mi></mrow></msub></math></span>, where <span><math><mstyle><mi>Ch</mi></mstyle><mrow><mo>(</mo><mi>F</mi><mo>)</mo></mrow></math></span> is the characteristic cycle of <span><math><mi>F</mi></math></span> and <span><math><mover><mrow><msub><mrow><mi>χ</mi></mrow><mrow><msub><mrow><mi>g</mi></mrow><mrow><mi>C</mi></mrow></msub></mrow></msub></mrow><mrow><mo>˜</mo></mrow></mover></math></span> is the Euler form of <span><math><mi>M</mi></math></span> extended to the cotangent space <span><math><msup><mrow><mi>T</mi></mrow><mrow><mo>∗</mo></mrow></msup><mi>M</mi></math></span> (independently of <span><math><mi>F</mi></math></span>). We also consider an analogue of Duistermaat–Heckman measures for real reductive Lie groups acting on symplectic manifolds.</p><p>In [M. Libine, Riemann–Roch–Hirzebruch integral formula for characters of reductive Lie groups, Represent. Theory 9 (2005) 507–524. Also <span>math.RT/0312454</span><svg><path></path></svg>] I apply the results of this article to obtain a Riemann–Roch–Hirzebruch type integral formula for characters of representations of reductive groups.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"47 1\",\"pages\":\"Pages 1-39\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.07.001\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938307000262\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938307000262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
等闭形式的Berline-Vergne积分局部化公式[N]。Berline, M. Vergne,《类caracacsamristiques samquivariantes》。公式的局部化与同质性,中国科学院学报。[p] [b],定理7.11。Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992])是众所周知的,它要求作用李群是紧的。在本文中,我们将这一结果推广到实约李群gr中,作为这一推广的一个应用,我们证明了可构造束的高斯-博内定理的一个类比。如果F是复射影流形M上的gR -等变轴,则M关于Fχ(M,F)=1(2π)dimCM∫Ch(F)χgC ~的欧拉特征是gR上的分布,其中Ch(F)是F的特征环,χgC ~是M扩展到余切空间T * M的欧拉形式(与F无关)。我们还考虑了作用于辛流形上的实约李群的Duistermaat-Heckman测度的一个模拟。在[M。李林,约化李群性质的Riemann-Roch-Hirzebruch积分公式,表示。理论9(2005)507-524。同时数学。[[0312454]应用本文的结果,得到了约化群表示特征的Riemann-Roch-Hirzebruch型积分公式。
Integrals of equivariant forms and a Gauss–Bonnet theorem for constructible sheaves
The Berline–Vergne integral localization formula for equivariantly closed forms ([N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formules de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris 295 (1982) 539–541], Theorem 7.11 in [N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Springer-Verlag, 1992]) is well-known and requires the acting Lie group to be compact. In this article, we extend this result to real reductive Lie groups .
As an application of this generalization, we prove an analogue of the Gauss–Bonnet theorem for constructible sheaves. If is a -equivariant sheaf on a complex projective manifold , then the Euler characteristic of with respect to as distributions on , where is the characteristic cycle of and is the Euler form of extended to the cotangent space (independently of ). We also consider an analogue of Duistermaat–Heckman measures for real reductive Lie groups acting on symplectic manifolds.
In [M. Libine, Riemann–Roch–Hirzebruch integral formula for characters of reductive Lie groups, Represent. Theory 9 (2005) 507–524. Also math.RT/0312454] I apply the results of this article to obtain a Riemann–Roch–Hirzebruch type integral formula for characters of representations of reductive groups.