{"title":"单李群的扭曲k -同调","authors":"Christopher L. Douglas","doi":"10.1016/j.top.2006.06.007","DOIUrl":null,"url":null,"abstract":"<div><p>We prove that the twisted <span><math><mi>K</mi></math></span>-homology of a simply connected simple Lie group <span><math><mi>G</mi></math></span> of rank <span><math><mi>n</mi></math></span> is an exterior algebra on <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> generators tensor a cyclic group. We give a detailed description of the order of this cyclic group in terms of the dimensions of irreducible representations of <span><math><mi>G</mi></math></span> and show that the congruences determining this cyclic order lift along the twisted index map to relations in the twisted <span><math><msup><mrow><mstyle><mi>Spin</mi></mstyle></mrow><mrow><mi>c</mi></mrow></msup></math></span> bordism group of <span><math><mi>G</mi></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 6","pages":"Pages 955-988"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.06.007","citationCount":"56","resultStr":"{\"title\":\"On the twisted K-homology of simple Lie groups\",\"authors\":\"Christopher L. Douglas\",\"doi\":\"10.1016/j.top.2006.06.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We prove that the twisted <span><math><mi>K</mi></math></span>-homology of a simply connected simple Lie group <span><math><mi>G</mi></math></span> of rank <span><math><mi>n</mi></math></span> is an exterior algebra on <span><math><mi>n</mi><mo>−</mo><mn>1</mn></math></span> generators tensor a cyclic group. We give a detailed description of the order of this cyclic group in terms of the dimensions of irreducible representations of <span><math><mi>G</mi></math></span> and show that the congruences determining this cyclic order lift along the twisted index map to relations in the twisted <span><math><msup><mrow><mstyle><mi>Spin</mi></mstyle></mrow><mrow><mi>c</mi></mrow></msup></math></span> bordism group of <span><math><mi>G</mi></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 6\",\"pages\":\"Pages 955-988\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.06.007\",\"citationCount\":\"56\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that the twisted -homology of a simply connected simple Lie group of rank is an exterior algebra on generators tensor a cyclic group. We give a detailed description of the order of this cyclic group in terms of the dimensions of irreducible representations of and show that the congruences determining this cyclic order lift along the twisted index map to relations in the twisted bordism group of .