映射类组的秩不变量

Topology Pub Date : 2006-09-01 DOI:10.1016/j.top.2006.06.001
Aaron Heap
{"title":"映射类组的秩不变量","authors":"Aaron Heap","doi":"10.1016/j.top.2006.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>We define new bordism and spin bordism invariants of certain subgroups of the mapping class group of a surface. In particular, they are invariants of the Johnson filtration of the mapping class group. The second and third terms of this filtration are the well-known Torelli group and Johnson subgroup, respectively. We introduce a new representation in terms of spin bordism, and we prove that this single representation contains all of the information given by the Johnson homomorphism, the Birman–Craggs homomorphism, and the Morita homomorphism.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 5","pages":"Pages 851-886"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.06.001","citationCount":"19","resultStr":"{\"title\":\"Bordism invariants of the mapping class group\",\"authors\":\"Aaron Heap\",\"doi\":\"10.1016/j.top.2006.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We define new bordism and spin bordism invariants of certain subgroups of the mapping class group of a surface. In particular, they are invariants of the Johnson filtration of the mapping class group. The second and third terms of this filtration are the well-known Torelli group and Johnson subgroup, respectively. We introduce a new representation in terms of spin bordism, and we prove that this single representation contains all of the information given by the Johnson homomorphism, the Birman–Craggs homomorphism, and the Morita homomorphism.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 5\",\"pages\":\"Pages 851-886\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.06.001\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000292\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们定义了曲面的映射类群的某些子群的新边界不变量和自旋边界不变量。特别地,它们是映射类群的Johnson过滤的不变量。这种过滤的第二和第三项分别是著名的Torelli群和Johnson子群。我们引入了一个新的自旋同态表示,并证明了这个新表示包含了Johnson同态、Birman-Craggs同态和Morita同态给出的所有信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bordism invariants of the mapping class group

We define new bordism and spin bordism invariants of certain subgroups of the mapping class group of a surface. In particular, they are invariants of the Johnson filtration of the mapping class group. The second and third terms of this filtration are the well-known Torelli group and Johnson subgroup, respectively. We introduce a new representation in terms of spin bordism, and we prove that this single representation contains all of the information given by the Johnson homomorphism, the Birman–Craggs homomorphism, and the Morita homomorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信