轨道上的封闭测地线

Topology Pub Date : 2006-05-01 DOI:10.1016/j.top.2006.01.004
K. Guruprasad, A. Haefliger
{"title":"轨道上的封闭测地线","authors":"K. Guruprasad,&nbsp;A. Haefliger","doi":"10.1016/j.top.2006.01.004","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we try to generalize to the case of compact Riemannian orbifolds <em>Q</em> some classical results about the existence of closed geodesics of positive length on compact Riemannian manifolds <em>M</em>. We shall also consider the problem of the existence of infinitely many geometrically distinct closed geodesics.</p><p>In the classical case the solution of those problems involve the consideration of the homotopy groups of <em>M</em> and the homology properties of the free loop space on <em>M</em> (Morse theory). Those notions have their analogue in the case of orbifolds. The main part of this paper will be to recall those notions and to show how the classical techniques can be adapted to the case of orbifolds.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 611-641"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.01.004","citationCount":"32","resultStr":"{\"title\":\"Closed geodesics on orbifolds\",\"authors\":\"K. Guruprasad,&nbsp;A. Haefliger\",\"doi\":\"10.1016/j.top.2006.01.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we try to generalize to the case of compact Riemannian orbifolds <em>Q</em> some classical results about the existence of closed geodesics of positive length on compact Riemannian manifolds <em>M</em>. We shall also consider the problem of the existence of infinitely many geometrically distinct closed geodesics.</p><p>In the classical case the solution of those problems involve the consideration of the homotopy groups of <em>M</em> and the homology properties of the free loop space on <em>M</em> (Morse theory). Those notions have their analogue in the case of orbifolds. The main part of this paper will be to recall those notions and to show how the classical techniques can be adapted to the case of orbifolds.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 3\",\"pages\":\"Pages 611-641\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.01.004\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

本文将紧黎曼流形m上存在正长度闭测地线的一些经典结果推广到紧黎曼轨道Q的情况,并考虑无穷多个几何上不同的闭测地线的存在性问题。在经典情况下,这些问题的解涉及到M的同伦群和M上自由环空间的同伦性质(莫尔斯理论)。这些概念在轨道的情况下也有类似的情况。本文的主要部分将是回顾这些概念,并展示经典技术如何适用于轨道的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Closed geodesics on orbifolds

In this paper, we try to generalize to the case of compact Riemannian orbifolds Q some classical results about the existence of closed geodesics of positive length on compact Riemannian manifolds M. We shall also consider the problem of the existence of infinitely many geometrically distinct closed geodesics.

In the classical case the solution of those problems involve the consideration of the homotopy groups of M and the homology properties of the free loop space on M (Morse theory). Those notions have their analogue in the case of orbifolds. The main part of this paper will be to recall those notions and to show how the classical techniques can be adapted to the case of orbifolds.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信