流动的相干测度和光滑Lyapunov 1型的存在性

Topology Pub Date : 2006-07-01 DOI:10.1016/j.top.2006.01.001
Janko Latschev
{"title":"流动的相干测度和光滑Lyapunov 1型的存在性","authors":"Janko Latschev","doi":"10.1016/j.top.2006.01.001","DOIUrl":null,"url":null,"abstract":"<div><p>Let a smooth vector field <span><math><mi>V</mi></math></span> on a smooth closed manifold <span><math><mi>M</mi></math></span> be given and let <span><math><mi>Z</mi><mo>⊂</mo><mi>M</mi></math></span> be an isolated invariant set for the flow of <span><math><mi>V</mi></math></span>. In this situation, we give a necessary and sufficient condition for the existence of a Lyapunov 1-form for <span><math><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow></math></span> in terms of the relative asymptotic cycles associated with certain invariant measures of the flow.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 4","pages":"Pages 707-723"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2006.01.001","citationCount":"6","resultStr":"{\"title\":\"Coherent measures and the existence of smooth Lyapunov 1-forms for flows\",\"authors\":\"Janko Latschev\",\"doi\":\"10.1016/j.top.2006.01.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let a smooth vector field <span><math><mi>V</mi></math></span> on a smooth closed manifold <span><math><mi>M</mi></math></span> be given and let <span><math><mi>Z</mi><mo>⊂</mo><mi>M</mi></math></span> be an isolated invariant set for the flow of <span><math><mi>V</mi></math></span>. In this situation, we give a necessary and sufficient condition for the existence of a Lyapunov 1-form for <span><math><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>Z</mi><mo>)</mo></mrow></math></span> in terms of the relative asymptotic cycles associated with certain invariant measures of the flow.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 4\",\"pages\":\"Pages 707-723\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2006.01.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938306000073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938306000073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

设光滑闭流形M上的一个光滑向量场V,并设Z∧M是流V的一个孤立不变集。在这种情况下,我们给出了(V,Z)在与流的某些不变测度相关的相对渐近环中存在Lyapunov 1-形式的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coherent measures and the existence of smooth Lyapunov 1-forms for flows

Let a smooth vector field V on a smooth closed manifold M be given and let ZM be an isolated invariant set for the flow of V. In this situation, we give a necessary and sufficient condition for the existence of a Lyapunov 1-form for (V,Z) in terms of the relative asymptotic cycles associated with certain invariant measures of the flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信