{"title":"BGp∧的可选稳定同伦分类","authors":"Kári Ragnarsson","doi":"10.1016/j.top.2005.11.004","DOIUrl":null,"url":null,"abstract":"<div><p>We give an alternative to the stable classification of <em>p</em>-completed homotopy types of classifying spaces of finite groups offered by Martino–Priddy. For a finite group <em>G</em> with Sylow subgroup <em>S</em>, we regard the stable <em>p</em>-completed classifying space <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span> as an object under <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mi>BS</mi></math></span> via the canonical inclusion map. Thus we get a classification in terms of induced fusion systems. Applying Oliver's solution to the Martino–Priddy conjecture, we obtain the surprising result that the unstable homotopy type of <span><math><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span> is determined by the map <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mi>BS</mi><mo>→</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span>, but not by the homotopy type of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span>.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 601-609"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.11.004","citationCount":"3","resultStr":"{\"title\":\"Alternative stable homotopy classification of BGp∧\",\"authors\":\"Kári Ragnarsson\",\"doi\":\"10.1016/j.top.2005.11.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give an alternative to the stable classification of <em>p</em>-completed homotopy types of classifying spaces of finite groups offered by Martino–Priddy. For a finite group <em>G</em> with Sylow subgroup <em>S</em>, we regard the stable <em>p</em>-completed classifying space <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span> as an object under <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mi>BS</mi></math></span> via the canonical inclusion map. Thus we get a classification in terms of induced fusion systems. Applying Oliver's solution to the Martino–Priddy conjecture, we obtain the surprising result that the unstable homotopy type of <span><math><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span> is determined by the map <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><mi>BS</mi><mo>→</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span>, but not by the homotopy type of <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>∞</mo></mrow></msup><msubsup><mrow><mi>BG</mi></mrow><mrow><mi>p</mi></mrow><mrow><mo>∧</mo></mrow></msubsup></math></span>.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 3\",\"pages\":\"Pages 601-609\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2005.11.004\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938305000996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Alternative stable homotopy classification of BGp∧
We give an alternative to the stable classification of p-completed homotopy types of classifying spaces of finite groups offered by Martino–Priddy. For a finite group G with Sylow subgroup S, we regard the stable p-completed classifying space as an object under via the canonical inclusion map. Thus we get a classification in terms of induced fusion systems. Applying Oliver's solution to the Martino–Priddy conjecture, we obtain the surprising result that the unstable homotopy type of is determined by the map , but not by the homotopy type of .