{"title":"2桥结的交叉数","authors":"Mikami Hirasawa , Masakazu Teragaito","doi":"10.1016/j.top.2005.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 513-530"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.11.001","citationCount":"27","resultStr":"{\"title\":\"Crosscap numbers of 2-bridge knots\",\"authors\":\"Mikami Hirasawa , Masakazu Teragaito\",\"doi\":\"10.1016/j.top.2005.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 3\",\"pages\":\"Pages 513-530\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2005.11.001\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0040938305000959\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040938305000959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a practical algorithm to determine the minimal genus of non-orientable spanning surfaces for 2-bridge knots, called the crosscap numbers. We will exhibit a table of crosscap numbers of 2-bridge knots up to 12 crossings (all 362 of them).