图8结群的子群可分性

Topology Pub Date : 2006-05-01 DOI:10.1016/j.top.2005.06.004
Daniel T. Wise
{"title":"图8结群的子群可分性","authors":"Daniel T. Wise","doi":"10.1016/j.top.2005.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>It is shown that the fundamental groups of certain non-positively curved 2-complexes have the property that their quasiconvex subgroups are the intersections of finite index subgroups.</p><p>As a consequence, every geometrically finite subgroup of the figure 8 knot group is the intersection of finite index subgroups. The same result holds for many other prime alternating link groups.</p></div>","PeriodicalId":54424,"journal":{"name":"Topology","volume":"45 3","pages":"Pages 421-463"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.top.2005.06.004","citationCount":"44","resultStr":"{\"title\":\"Subgroup separability of the figure 8 knot group\",\"authors\":\"Daniel T. Wise\",\"doi\":\"10.1016/j.top.2005.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>It is shown that the fundamental groups of certain non-positively curved 2-complexes have the property that their quasiconvex subgroups are the intersections of finite index subgroups.</p><p>As a consequence, every geometrically finite subgroup of the figure 8 knot group is the intersection of finite index subgroups. The same result holds for many other prime alternating link groups.</p></div>\",\"PeriodicalId\":54424,\"journal\":{\"name\":\"Topology\",\"volume\":\"45 3\",\"pages\":\"Pages 421-463\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.top.2005.06.004\",\"citationCount\":\"44\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S004093830500056X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004093830500056X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

摘要

证明了某些非正曲线2-配合物的基群具有其拟凸子群是有限指数子群的交点的性质。因此,图8结群的每一个几何有限子群都是有限指数子群的交集。同样的结果也适用于许多其他素数交替连接组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Subgroup separability of the figure 8 knot group

It is shown that the fundamental groups of certain non-positively curved 2-complexes have the property that their quasiconvex subgroups are the intersections of finite index subgroups.

As a consequence, every geometrically finite subgroup of the figure 8 knot group is the intersection of finite index subgroups. The same result holds for many other prime alternating link groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Topology
Topology 数学-数学
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信