交通网络设计中的最大接入

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hema S. Rayaprolu , Hao Wu , Bahman Lahoorpoor , David Levinson
{"title":"交通网络设计中的最大接入","authors":"Hema S. Rayaprolu ,&nbsp;Hao Wu ,&nbsp;Bahman Lahoorpoor ,&nbsp;David Levinson","doi":"10.1016/j.jpubtr.2022.100027","DOIUrl":null,"url":null,"abstract":"<div><p>This study adopts an Access-Oriented Design (AOD) framework for optimizing transit network design. We present and demonstrate a method to evaluate the best combination of local and express alternative transit system designs through the novel concept of ‘iso-access lines’. Two bus network system designs were explored for a greenfield development in suburban Sydney: through-routed transit lines (T-ways) with higher speeds and more direct service, but longer access and egress times, and local routes that provide additional spatial coverage. We developed scenarios with T-ways only, local routes only, and both, and computed transit access to jobs as a cumulative-opportunities measure for each scenario. Local routes offer greater overall access, while T-ways provide greater access-per-unit-cost. The optimal combination of the two was established by generating ‘iso-access’ lines and determining access-maximizing combinations for a given cost by applying production-theory principles. For 15-min access, the optimal combinations had T-way service frequency equivalent to 0.48 times that of local routes. This ratio increased to 1.45, 2.05 and 2.63 for 30-min, 45- min and 60-min access respectively. In practice, the method can be applied to determine optimal transit combinations for any given budget and desired access level.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1077291X22000273/pdfft?md5=40a8efec8181dd92fa4ee8fed0c8e824&pid=1-s2.0-S1077291X22000273-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Maximizing access in transit network design\",\"authors\":\"Hema S. Rayaprolu ,&nbsp;Hao Wu ,&nbsp;Bahman Lahoorpoor ,&nbsp;David Levinson\",\"doi\":\"10.1016/j.jpubtr.2022.100027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study adopts an Access-Oriented Design (AOD) framework for optimizing transit network design. We present and demonstrate a method to evaluate the best combination of local and express alternative transit system designs through the novel concept of ‘iso-access lines’. Two bus network system designs were explored for a greenfield development in suburban Sydney: through-routed transit lines (T-ways) with higher speeds and more direct service, but longer access and egress times, and local routes that provide additional spatial coverage. We developed scenarios with T-ways only, local routes only, and both, and computed transit access to jobs as a cumulative-opportunities measure for each scenario. Local routes offer greater overall access, while T-ways provide greater access-per-unit-cost. The optimal combination of the two was established by generating ‘iso-access’ lines and determining access-maximizing combinations for a given cost by applying production-theory principles. For 15-min access, the optimal combinations had T-way service frequency equivalent to 0.48 times that of local routes. This ratio increased to 1.45, 2.05 and 2.63 for 30-min, 45- min and 60-min access respectively. In practice, the method can be applied to determine optimal transit combinations for any given budget and desired access level.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1077291X22000273/pdfft?md5=40a8efec8181dd92fa4ee8fed0c8e824&pid=1-s2.0-S1077291X22000273-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1077291X22000273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077291X22000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 2

摘要

本文采用面向访问的设计(AOD)框架对公交网络进行优化设计。我们提出并展示了一种方法,通过“等通道线路”的新概念来评估本地和快速替代交通系统设计的最佳组合。为悉尼郊区的一个绿地开发项目探索了两种公交网络系统设计:具有更高速度和更直接服务的直通公交线路(T-ways),但进出时间较长,以及提供额外空间覆盖的本地路线。我们开发了仅使用t路、仅使用本地路线和两者兼而有之的场景,并计算了每个场景的公交访问作为累积机会度量。本地路由提供更大的整体访问,而t- way提供更高的单位成本访问。通过生成“等访问”线,并通过应用生产理论原则确定给定成本下访问最大化的组合,从而确定两者的最佳组合。对于15分钟的访问,最优组合的t路服务频率相当于本地路线的0.48倍。在30分钟、45分钟和60分钟时,这一比率分别为1.45、2.05和2.63。在实践中,该方法可用于确定任何给定预算和期望访问级别的最佳交通组合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximizing access in transit network design

This study adopts an Access-Oriented Design (AOD) framework for optimizing transit network design. We present and demonstrate a method to evaluate the best combination of local and express alternative transit system designs through the novel concept of ‘iso-access lines’. Two bus network system designs were explored for a greenfield development in suburban Sydney: through-routed transit lines (T-ways) with higher speeds and more direct service, but longer access and egress times, and local routes that provide additional spatial coverage. We developed scenarios with T-ways only, local routes only, and both, and computed transit access to jobs as a cumulative-opportunities measure for each scenario. Local routes offer greater overall access, while T-ways provide greater access-per-unit-cost. The optimal combination of the two was established by generating ‘iso-access’ lines and determining access-maximizing combinations for a given cost by applying production-theory principles. For 15-min access, the optimal combinations had T-way service frequency equivalent to 0.48 times that of local routes. This ratio increased to 1.45, 2.05 and 2.63 for 30-min, 45- min and 60-min access respectively. In practice, the method can be applied to determine optimal transit combinations for any given budget and desired access level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信