{"title":"具有反平方势的非线性Schrödinger方程的散射理论","authors":"Junyong Zhang , Jiqiang Zheng","doi":"10.1016/j.jfa.2014.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of <span><math><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"267 8","pages":"Pages 2907-2932"},"PeriodicalIF":1.7000,"publicationDate":"2014-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfa.2014.08.012","citationCount":"71","resultStr":"{\"title\":\"Scattering theory for nonlinear Schrödinger equations with inverse-square potential\",\"authors\":\"Junyong Zhang , Jiqiang Zheng\",\"doi\":\"10.1016/j.jfa.2014.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of <span><math><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"267 8\",\"pages\":\"Pages 2907-2932\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2014-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfa.2014.08.012\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123614003395\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123614003395","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Scattering theory for nonlinear Schrödinger equations with inverse-square potential
We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with . We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis