具有反平方势的非线性Schrödinger方程的散射理论

IF 1.7 2区 数学 Q1 MATHEMATICS
Junyong Zhang , Jiqiang Zheng
{"title":"具有反平方势的非线性Schrödinger方程的散射理论","authors":"Junyong Zhang ,&nbsp;Jiqiang Zheng","doi":"10.1016/j.jfa.2014.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of <span><math><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"267 8","pages":"Pages 2907-2932"},"PeriodicalIF":1.7000,"publicationDate":"2014-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jfa.2014.08.012","citationCount":"71","resultStr":"{\"title\":\"Scattering theory for nonlinear Schrödinger equations with inverse-square potential\",\"authors\":\"Junyong Zhang ,&nbsp;Jiqiang Zheng\",\"doi\":\"10.1016/j.jfa.2014.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of <span><math><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span> type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>Δ</mi><mo>+</mo><mi>a</mi><msup><mrow><mo>|</mo><mi>x</mi><mo>|</mo></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup></math></span>. We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":15750,\"journal\":{\"name\":\"Journal of Functional Analysis\",\"volume\":\"267 8\",\"pages\":\"Pages 2907-2932\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2014-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jfa.2014.08.012\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022123614003395\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123614003395","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 71

摘要

研究了一类具有a|x|−2型临界粗势的非线性Schrödinger方程解的长时性。新的成分是相互作用的morawetz型不等式和与Pa= - Δ+a|x|−2相关的Sobolev范数性质。我们利用这些性质得到了能量空间H1(Rn)中具有平方势逆的散焦能量亚临界非线性Schrödinger方程的散射理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scattering theory for nonlinear Schrödinger equations with inverse-square potential

We study the long-time behavior of solutions to nonlinear Schrödinger equations with some critical rough potential of a|x|2 type. The new ingredients are the interaction Morawetz-type inequalities and Sobolev norm property associated with Pa=Δ+a|x|2. We use such properties to obtain the scattering theory for the defocusing energy-subcritical nonlinear Schrödinger equation with inverse square potential in energy space H1(Rn).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信