{"title":"考虑风电成本的多目标水热风调度问题的扩展NSGA-III","authors":"Xiaohui Yuan , Hao Tian , Yanbin Yuan , Yuehua Huang , Rana M. Ikram","doi":"10.1016/j.enconman.2015.03.009","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the characteristics of clean and renewable, wind power is significant to economic and environmental operation of electric power system so that it attracts more and more attention from researchers. This paper integrates wind power with hydrothermal scheduling to establish multi-objective economic emission hydro-thermal-wind scheduling problem (MO-HTWS) model with considering wind uncertain cost. To solve MO-HTWS problem with various complicated constraints, this paper extends NSGA-III by introducing the dominance relationship criterion based on constraint violation to select new generation. Moreover, the constraint handling strategy which repairs the infeasible solutions by modifying the decision variables in feasible zone according to the violation amount is proposed. Finally, a daily scheduling example of hydro-thermal-wind system is used to test the ability of NSGA-III for solving MO-HTWS problem. It is concluded from the superior quality and good distribution of the Pareto optimal solutions that, NSGA-III can offer an efficient alternative for optimizing MO-HTWS problem.</p></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"96 ","pages":"Pages 568-578"},"PeriodicalIF":10.9000,"publicationDate":"2015-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.enconman.2015.03.009","citationCount":"137","resultStr":"{\"title\":\"An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost\",\"authors\":\"Xiaohui Yuan , Hao Tian , Yanbin Yuan , Yuehua Huang , Rana M. Ikram\",\"doi\":\"10.1016/j.enconman.2015.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the characteristics of clean and renewable, wind power is significant to economic and environmental operation of electric power system so that it attracts more and more attention from researchers. This paper integrates wind power with hydrothermal scheduling to establish multi-objective economic emission hydro-thermal-wind scheduling problem (MO-HTWS) model with considering wind uncertain cost. To solve MO-HTWS problem with various complicated constraints, this paper extends NSGA-III by introducing the dominance relationship criterion based on constraint violation to select new generation. Moreover, the constraint handling strategy which repairs the infeasible solutions by modifying the decision variables in feasible zone according to the violation amount is proposed. Finally, a daily scheduling example of hydro-thermal-wind system is used to test the ability of NSGA-III for solving MO-HTWS problem. It is concluded from the superior quality and good distribution of the Pareto optimal solutions that, NSGA-III can offer an efficient alternative for optimizing MO-HTWS problem.</p></div>\",\"PeriodicalId\":11664,\"journal\":{\"name\":\"Energy Conversion and Management\",\"volume\":\"96 \",\"pages\":\"Pages 568-578\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2015-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.enconman.2015.03.009\",\"citationCount\":\"137\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196890415002198\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196890415002198","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
An extended NSGA-III for solution multi-objective hydro-thermal-wind scheduling considering wind power cost
Due to the characteristics of clean and renewable, wind power is significant to economic and environmental operation of electric power system so that it attracts more and more attention from researchers. This paper integrates wind power with hydrothermal scheduling to establish multi-objective economic emission hydro-thermal-wind scheduling problem (MO-HTWS) model with considering wind uncertain cost. To solve MO-HTWS problem with various complicated constraints, this paper extends NSGA-III by introducing the dominance relationship criterion based on constraint violation to select new generation. Moreover, the constraint handling strategy which repairs the infeasible solutions by modifying the decision variables in feasible zone according to the violation amount is proposed. Finally, a daily scheduling example of hydro-thermal-wind system is used to test the ability of NSGA-III for solving MO-HTWS problem. It is concluded from the superior quality and good distribution of the Pareto optimal solutions that, NSGA-III can offer an efficient alternative for optimizing MO-HTWS problem.
期刊介绍:
The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics.
The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.