全氟和多氟烷基物质的完全去氟化——梦想还是现实?

IF 8 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jan-Max Arana Juve , Bo Wang , Michael S. Wong , Mohammed Ateia , Zongsu Wei
{"title":"全氟和多氟烷基物质的完全去氟化——梦想还是现实?","authors":"Jan-Max Arana Juve ,&nbsp;Bo Wang ,&nbsp;Michael S. Wong ,&nbsp;Mohammed Ateia ,&nbsp;Zongsu Wei","doi":"10.1016/j.coche.2023.100943","DOIUrl":null,"url":null,"abstract":"<div><p>The consensus of removing per- and polyfluoroalkyl substances (PFAS) from the environment is widely recognized and enlightened by the near-zero standards released from the U.S. Environmental Protection Agency in 2023. The only way to achieve the goal of zero fluoro-pollution is to fully defluorinate or mineralize PFAS, but current technologies only partially defluorinate a limited number of PFAS, which can lead to the creation of potentially more toxic short-chain intermediates. Therefore, we discuss herein the need to broaden the scope of tested PFAS, summarize the state-of-the-art degradation technologies, and provide perspectives to achieve complete defluorination. Besides fundamental knowledge gaps in defluorination reactions, technological gaps in the aspects of water matrix effects, pilot tests, and cost analysis also limit the application and comparison of different treatment technologies. This work would shed light on further research to find solutions in the complete defluorination of PFAS.</p></div>","PeriodicalId":292,"journal":{"name":"Current Opinion in Chemical Engineering","volume":"41 ","pages":"Article 100943"},"PeriodicalIF":8.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2211339823000473/pdfft?md5=2b50415aecee54e484714bba358b5174&pid=1-s2.0-S2211339823000473-main.pdf","citationCount":"1","resultStr":"{\"title\":\"Complete defluorination of per- and polyfluoroalkyl substances — dream or reality?\",\"authors\":\"Jan-Max Arana Juve ,&nbsp;Bo Wang ,&nbsp;Michael S. Wong ,&nbsp;Mohammed Ateia ,&nbsp;Zongsu Wei\",\"doi\":\"10.1016/j.coche.2023.100943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The consensus of removing per- and polyfluoroalkyl substances (PFAS) from the environment is widely recognized and enlightened by the near-zero standards released from the U.S. Environmental Protection Agency in 2023. The only way to achieve the goal of zero fluoro-pollution is to fully defluorinate or mineralize PFAS, but current technologies only partially defluorinate a limited number of PFAS, which can lead to the creation of potentially more toxic short-chain intermediates. Therefore, we discuss herein the need to broaden the scope of tested PFAS, summarize the state-of-the-art degradation technologies, and provide perspectives to achieve complete defluorination. Besides fundamental knowledge gaps in defluorination reactions, technological gaps in the aspects of water matrix effects, pilot tests, and cost analysis also limit the application and comparison of different treatment technologies. This work would shed light on further research to find solutions in the complete defluorination of PFAS.</p></div>\",\"PeriodicalId\":292,\"journal\":{\"name\":\"Current Opinion in Chemical Engineering\",\"volume\":\"41 \",\"pages\":\"Article 100943\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000473/pdfft?md5=2b50415aecee54e484714bba358b5174&pid=1-s2.0-S2211339823000473-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211339823000473\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211339823000473","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

从环境中去除全氟烷基和多氟烷基物质(PFAS)的共识得到了广泛认可,并受到美国环境保护署(epa)于2023年发布的近零标准的启发。实现零氟污染目标的唯一途径是完全去氟化或矿化全氟磺酸,但目前的技术只能部分去氟化有限数量的全氟磺酸,这可能导致产生潜在毒性更大的短链中间体。因此,我们在此讨论了扩大PFAS测试范围的必要性,总结了最先进的降解技术,并提供了实现完全除氟的前景。除除氟反应的基础知识差距外,水基质效应、中试和成本分析等方面的技术差距也限制了不同处理技术的应用和比较。这项工作将有助于进一步研究寻找PFAS完全去氟化的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complete defluorination of per- and polyfluoroalkyl substances — dream or reality?

The consensus of removing per- and polyfluoroalkyl substances (PFAS) from the environment is widely recognized and enlightened by the near-zero standards released from the U.S. Environmental Protection Agency in 2023. The only way to achieve the goal of zero fluoro-pollution is to fully defluorinate or mineralize PFAS, but current technologies only partially defluorinate a limited number of PFAS, which can lead to the creation of potentially more toxic short-chain intermediates. Therefore, we discuss herein the need to broaden the scope of tested PFAS, summarize the state-of-the-art degradation technologies, and provide perspectives to achieve complete defluorination. Besides fundamental knowledge gaps in defluorination reactions, technological gaps in the aspects of water matrix effects, pilot tests, and cost analysis also limit the application and comparison of different treatment technologies. This work would shed light on further research to find solutions in the complete defluorination of PFAS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Current Opinion in Chemical Engineering
Current Opinion in Chemical Engineering BIOTECHNOLOGY & APPLIED MICROBIOLOGYENGINE-ENGINEERING, CHEMICAL
CiteScore
12.80
自引率
3.00%
发文量
114
期刊介绍: Current Opinion in Chemical Engineering is devoted to bringing forth short and focused review articles written by experts on current advances in different areas of chemical engineering. Only invited review articles will be published. The goals of each review article in Current Opinion in Chemical Engineering are: 1. To acquaint the reader/researcher with the most important recent papers in the given topic. 2. To provide the reader with the views/opinions of the expert in each topic. The reviews are short (about 2500 words or 5-10 printed pages with figures) and serve as an invaluable source of information for researchers, teachers, professionals and students. The reviews also aim to stimulate exchange of ideas among experts. Themed sections: Each review will focus on particular aspects of one of the following themed sections of chemical engineering: 1. Nanotechnology 2. Energy and environmental engineering 3. Biotechnology and bioprocess engineering 4. Biological engineering (covering tissue engineering, regenerative medicine, drug delivery) 5. Separation engineering (covering membrane technologies, adsorbents, desalination, distillation etc.) 6. Materials engineering (covering biomaterials, inorganic especially ceramic materials, nanostructured materials). 7. Process systems engineering 8. Reaction engineering and catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信