用于经角膜靶向递送微小RNA-21-5p和青光眼特异性基因治疗的还原反应性聚合物胶束。

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Binze Han, Rong Zhang, Liping Li, Chunchun Hu, Mengwei Li, Jiamin Liu, Xinghuai Sun, Wenpei Fan, Jinbing Xie and Yuan Lei
{"title":"用于经角膜靶向递送微小RNA-21-5p和青光眼特异性基因治疗的还原反应性聚合物胶束。","authors":"Binze Han, Rong Zhang, Liping Li, Chunchun Hu, Mengwei Li, Jiamin Liu, Xinghuai Sun, Wenpei Fan, Jinbing Xie and Yuan Lei","doi":"10.1039/D3TB01430D","DOIUrl":null,"url":null,"abstract":"<p >The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy. Herein, we selected a miRNA, namely miR-21-5p, based on its unique intraocular pressure (IOP) mechano-sensing property. Moreover, a biocompatible polymeric poly(<small>L</small>-lysine) (PLL) micelle conjugated with collagenase and ABCA1 antibody was judiciously constructed to achieve the trans-corneal and target delivery of miR-21-5p to the trabecular meshwork (TM) and Schlemm's canal (SC) tissues inside the eye. The topically administrated PLL micelles as an eye drop successfully crossed the cornea with the help of collagenase and then preferentially accumulated in the target TM/SC tissues under the guidance of the ABCA1 antibody. When endocytosed by TM/SC cells, the PLL micelles could be decomposed in the reductive lysosomal environment to release miR-21-5p for successfully lowering the IOP by activating the miR-21-5p/eNOS/MMP9 signaling axis, which will open new prospects for glaucoma-specific gene therapy.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 43","pages":" 10433-10445"},"PeriodicalIF":6.1000,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy†\",\"authors\":\"Binze Han, Rong Zhang, Liping Li, Chunchun Hu, Mengwei Li, Jiamin Liu, Xinghuai Sun, Wenpei Fan, Jinbing Xie and Yuan Lei\",\"doi\":\"10.1039/D3TB01430D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy. Herein, we selected a miRNA, namely miR-21-5p, based on its unique intraocular pressure (IOP) mechano-sensing property. Moreover, a biocompatible polymeric poly(<small>L</small>-lysine) (PLL) micelle conjugated with collagenase and ABCA1 antibody was judiciously constructed to achieve the trans-corneal and target delivery of miR-21-5p to the trabecular meshwork (TM) and Schlemm's canal (SC) tissues inside the eye. The topically administrated PLL micelles as an eye drop successfully crossed the cornea with the help of collagenase and then preferentially accumulated in the target TM/SC tissues under the guidance of the ABCA1 antibody. When endocytosed by TM/SC cells, the PLL micelles could be decomposed in the reductive lysosomal environment to release miR-21-5p for successfully lowering the IOP by activating the miR-21-5p/eNOS/MMP9 signaling axis, which will open new prospects for glaucoma-specific gene therapy.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 43\",\"pages\":\" 10433-10445\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2023-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01430d\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2023/tb/d3tb01430d","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

微小RNA(miRNA)对青光眼的治疗价值已成为人们关注的焦点。然而,裸露的miRNA不能自行穿过角膜屏障到达靶组织。因此,miRNA精确转运到靶位点是基因治疗成功的关键。在此,我们基于其独特的眼压(IOP)机械传感特性选择了一种miRNA,即miR-21-5p。此外,明智地构建了与胶原酶和ABCA1抗体缀合的生物相容性聚合物聚L-赖氨酸(PLL)胶束,以实现miR-21-5p经角膜和靶向递送到眼睛内部的小梁网(TM)和施累姆氏管(SC)组织。作为滴眼液的局部给药PLL胶束在胶原酶的帮助下成功穿过角膜,然后在ABCA1抗体的引导下优先积聚在靶TM/SC组织中。当被TM/SC细胞内吞时,PLL胶束可以在还原性溶酶体环境中分解,释放miR-21-5p,通过激活miR-21-5p/eNOS/MMP9信号轴成功降低眼压,这将为青光眼特异性基因治疗开辟新的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy†

Reduction-responsive polymeric micelles for trans-corneal targeted delivery of microRNA-21-5p and glaucoma-specific gene therapy†

The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy. Herein, we selected a miRNA, namely miR-21-5p, based on its unique intraocular pressure (IOP) mechano-sensing property. Moreover, a biocompatible polymeric poly(L-lysine) (PLL) micelle conjugated with collagenase and ABCA1 antibody was judiciously constructed to achieve the trans-corneal and target delivery of miR-21-5p to the trabecular meshwork (TM) and Schlemm's canal (SC) tissues inside the eye. The topically administrated PLL micelles as an eye drop successfully crossed the cornea with the help of collagenase and then preferentially accumulated in the target TM/SC tissues under the guidance of the ABCA1 antibody. When endocytosed by TM/SC cells, the PLL micelles could be decomposed in the reductive lysosomal environment to release miR-21-5p for successfully lowering the IOP by activating the miR-21-5p/eNOS/MMP9 signaling axis, which will open new prospects for glaucoma-specific gene therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信