人工扩大自然视觉光谱范围的研究。

IF 6.6 3区 医学 Q1 ENGINEERING, BIOMEDICAL
APL Bioengineering Pub Date : 2023-10-24 eCollection Date: 2023-12-01 DOI:10.1063/5.0156463
Abhijith Krishnan, C S Deepak, K S Narayan
{"title":"人工扩大自然视觉光谱范围的研究。","authors":"Abhijith Krishnan, C S Deepak, K S Narayan","doi":"10.1063/5.0156463","DOIUrl":null,"url":null,"abstract":"<p><p>Organic semiconductors are being explored as retinal prosthetics with the prime attributes of bio-compatibility and conformability for seamless integration with the retina. These polymer-based artificial photoreceptor films are self-powered with light-induced signal strength sufficient to elicit neuronal firing events. The molecular aspect of these semiconductors provides wide spectral tunability. Here, we present results from a bulk heterostructure semiconductor blend with a wide spectral response range. This combination elicits clear spiking activity from a developing blind-chick embryonic retina in the subretinal configuration in response to white light. The response is largely triggered by the blue-green spectral regime rather than the red-NIR regime for the present polymer semiconductor layer attributes.</p>","PeriodicalId":46288,"journal":{"name":"APL Bioengineering","volume":"7 4","pages":"046105"},"PeriodicalIF":6.6000,"publicationDate":"2023-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599790/pdf/","citationCount":"0","resultStr":"{\"title\":\"Investigations on artificially extending the spectral range of natural vision.\",\"authors\":\"Abhijith Krishnan, C S Deepak, K S Narayan\",\"doi\":\"10.1063/5.0156463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organic semiconductors are being explored as retinal prosthetics with the prime attributes of bio-compatibility and conformability for seamless integration with the retina. These polymer-based artificial photoreceptor films are self-powered with light-induced signal strength sufficient to elicit neuronal firing events. The molecular aspect of these semiconductors provides wide spectral tunability. Here, we present results from a bulk heterostructure semiconductor blend with a wide spectral response range. This combination elicits clear spiking activity from a developing blind-chick embryonic retina in the subretinal configuration in response to white light. The response is largely triggered by the blue-green spectral regime rather than the red-NIR regime for the present polymer semiconductor layer attributes.</p>\",\"PeriodicalId\":46288,\"journal\":{\"name\":\"APL Bioengineering\",\"volume\":\"7 4\",\"pages\":\"046105\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2023-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599790/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0156463\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0156463","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

有机半导体作为视网膜假肢正在被探索,其主要特征是生物相容性和可与视网膜无缝集成的适应性。这些基于聚合物的人工光感受器膜是自供电的,具有足以引发神经元放电事件的光诱导信号强度。这些半导体的分子方面提供了宽光谱可调谐性。在这里,我们展示了具有宽光谱响应范围的体异质结构半导体混合物的结果。这种组合从发育中的失明小鸡胚胎视网膜中激发出明显的尖峰活性,视网膜下结构对白光的反应。对于本聚合物半导体层属性,响应主要由蓝绿色光谱区域而不是红色NIR区域触发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigations on artificially extending the spectral range of natural vision.

Investigations on artificially extending the spectral range of natural vision.

Investigations on artificially extending the spectral range of natural vision.

Organic semiconductors are being explored as retinal prosthetics with the prime attributes of bio-compatibility and conformability for seamless integration with the retina. These polymer-based artificial photoreceptor films are self-powered with light-induced signal strength sufficient to elicit neuronal firing events. The molecular aspect of these semiconductors provides wide spectral tunability. Here, we present results from a bulk heterostructure semiconductor blend with a wide spectral response range. This combination elicits clear spiking activity from a developing blind-chick embryonic retina in the subretinal configuration in response to white light. The response is largely triggered by the blue-green spectral regime rather than the red-NIR regime for the present polymer semiconductor layer attributes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Bioengineering
APL Bioengineering ENGINEERING, BIOMEDICAL-
CiteScore
9.30
自引率
6.70%
发文量
39
审稿时长
19 weeks
期刊介绍: APL Bioengineering is devoted to research at the intersection of biology, physics, and engineering. The journal publishes high-impact manuscripts specific to the understanding and advancement of physics and engineering of biological systems. APL Bioengineering is the new home for the bioengineering and biomedical research communities. APL Bioengineering publishes original research articles, reviews, and perspectives. Topical coverage includes: -Biofabrication and Bioprinting -Biomedical Materials, Sensors, and Imaging -Engineered Living Systems -Cell and Tissue Engineering -Regenerative Medicine -Molecular, Cell, and Tissue Biomechanics -Systems Biology and Computational Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信