PKC通过SIRT6调节染色质重塑和DNA修复。

IF 4.1 2区 医学 Q2 CELL BIOLOGY
Trisiani Affandi, Ami Haas, Angela M Ohm, Gregory M Wright, Joshua C Black, Mary E Reyland
{"title":"PKC通过SIRT6调节染色质重塑和DNA修复。","authors":"Trisiani Affandi, Ami Haas, Angela M Ohm, Gregory M Wright, Joshua C Black, Mary E Reyland","doi":"10.1158/1541-7786.MCR-23-0493","DOIUrl":null,"url":null,"abstract":"<p><p>Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.</p><p><strong>Implications: </strong>PKCδ controls sensitivity to irradiation by regulating DNA repair.</p>","PeriodicalId":19095,"journal":{"name":"Molecular Cancer Research","volume":" ","pages":"181-196"},"PeriodicalIF":4.1000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872792/pdf/","citationCount":"0","resultStr":"{\"title\":\"PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6.\",\"authors\":\"Trisiani Affandi, Ami Haas, Angela M Ohm, Gregory M Wright, Joshua C Black, Mary E Reyland\",\"doi\":\"10.1158/1541-7786.MCR-23-0493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.</p><p><strong>Implications: </strong>PKCδ controls sensitivity to irradiation by regulating DNA repair.</p>\",\"PeriodicalId\":19095,\"journal\":{\"name\":\"Molecular Cancer Research\",\"volume\":\" \",\"pages\":\"181-196\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10872792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1158/1541-7786.MCR-23-0493\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1158/1541-7786.MCR-23-0493","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

辐射(IR)是一种高效的癌症治疗方法,然而,IR对肿瘤邻近健康组织的损伤可能导致显著的并发症,并可能限制治疗过程。我们之前已经表明,蛋白激酶Cδ(PKC?)是IR诱导的细胞凋亡所必需的,并且PKC?活性的抑制在体内提供了放射性保护。在这里,我们发现PKC通过一种需要SIRT6的机制调节组蛋白修饰、染色质可及性和双链断裂(DSB)修复。PKC的过度表达促进了基因组的不稳定性,并增加了DNA损伤和细胞凋亡。相反,PKC的缺失通过非同源末端连接(NHEJ)和同源重组(HR)增加了DNA修复,这可以通过增加DNA损伤灶的形成、增加DNA修复蛋白的表达以及增加NHEJ和HR荧光报告构建体的修复来证明。核酸酶敏感性表明PKC的缺失与更开放的染色质有关,而PKC的过表达降低了染色质的可及性。表观蛋白质组分析显示,PKC缺失细胞中染色质相关的H3K36me2增加,伴有KDM2A的染色质解离。我们确定SIRT6是PKC的下游介质。PKCğ-缺失的细胞增加了SIRT6的表达,SIRT6的缺失逆转了PKC abl-缺失细胞中染色质可及性、组蛋白修饰和DSB修复的变化。此外,SIRT6的缺失可逆转PKC缺失细胞的放射保护作用。我们的研究描述了一种新的途径,PKC通过该途径协调染色质可及性的SIRT6依赖性变化来调节DNA修复,并确定了PKC调节辐射诱导的细胞凋亡的机制。意义:PKC通过调节DNA修复来控制对辐射的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6.

Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.

Implications: PKCδ controls sensitivity to irradiation by regulating DNA repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Cancer Research
Molecular Cancer Research 医学-细胞生物学
CiteScore
9.90
自引率
0.00%
发文量
280
审稿时长
4-8 weeks
期刊介绍: Molecular Cancer Research publishes articles describing novel basic cancer research discoveries of broad interest to the field. Studies must be of demonstrated significance, and the journal prioritizes analyses performed at the molecular and cellular level that reveal novel mechanistic insight into pathways and processes linked to cancer risk, development, and/or progression. Areas of emphasis include all cancer-associated pathways (including cell-cycle regulation; cell death; chromatin regulation; DNA damage and repair; gene and RNA regulation; genomics; oncogenes and tumor suppressors; signal transduction; and tumor microenvironment), in addition to studies describing new molecular mechanisms and interactions that support cancer phenotypes. For full consideration, primary research submissions must provide significant novel insight into existing pathway functions or address new hypotheses associated with cancer-relevant biologic questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信