渗透蒸发膜用于乙醇分离的研究进展。

IF 3.3 4区 工程技术 Q2 CHEMISTRY, PHYSICAL
Muhammad Imad, Roberto Castro-Muñoz
{"title":"渗透蒸发膜用于乙醇分离的研究进展。","authors":"Muhammad Imad,&nbsp;Roberto Castro-Muñoz","doi":"10.3390/membranes13100848","DOIUrl":null,"url":null,"abstract":"<p><p>Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"13 10","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608438/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ongoing Progress on Pervaporation Membranes for Ethanol Separation.\",\"authors\":\"Muhammad Imad,&nbsp;Roberto Castro-Muñoz\",\"doi\":\"10.3390/membranes13100848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.</p>\",\"PeriodicalId\":18410,\"journal\":{\"name\":\"Membranes\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10608438/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/membranes13100848\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes13100848","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

乙醇是一种广泛应用于燃料生产、食品和饮料、制药和医疗保健行业以及化学制造等多个领域的通用化学品,其应用仍在不断扩大。因此,在稀释溶液(乙醇-水)和浓缩溶液(水-乙醇)中,对这种有机化合物的成本效益和环境友好的纯化技术一直存在需求。渗透蒸发(PV)作为一种膜技术,已成为一种很有前途的解决方案,可显著降低高纯度组件生产过程中的能源和资源消耗。这篇综述旨在全面介绍适用于光伏膜的材料的最新进展,包括聚合物膜(以及可能的共混)、无机膜、混合基质膜和新兴的二维材料膜。在这些膜材料中,我们讨论了在从水-乙醇和乙醇-水等液体系统中分离乙醇时提供最相关性能的膜材料。此外,这篇综述确定了材料设计和制造技术以及建立结构-性能关系方面的挑战和未来机遇。这些努力旨在推动下一代渗透蒸发膜的发展,提高分离效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ongoing Progress on Pervaporation Membranes for Ethanol Separation.

Ongoing Progress on Pervaporation Membranes for Ethanol Separation.

Ongoing Progress on Pervaporation Membranes for Ethanol Separation.

Ongoing Progress on Pervaporation Membranes for Ethanol Separation.

Ethanol, a versatile chemical extensively employed in several fields, including fuel production, food and beverage, pharmaceutical and healthcare industries, and chemical manufacturing, continues to witness expanding applications. Consequently, there is an ongoing need for cost-effective and environmentally friendly purification technologies for this organic compound in both diluted (ethanol-water-) and concentrated solutions (water-ethanol-). Pervaporation (PV), as a membrane technology, has emerged as a promising solution offering significant reductions in energy and resource consumption during the production of high-purity components. This review aims to provide a panorama of the recent advancements in materials adapted into PV membranes, encompassing polymeric membranes (and possible blending), inorganic membranes, mixed-matrix membranes, and emerging two-dimensional-material membranes. Among these membrane materials, we discuss the ones providing the most relevant performance in separating ethanol from the liquid systems of water-ethanol and ethanol-water, among others. Furthermore, this review identifies the challenges and future opportunities in material design and fabrication techniques, and the establishment of structure-performance relationships. These endeavors aim to propel the development of next-generation pervaporation membranes with an enhanced separation efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Membranes
Membranes Chemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍: Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信